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Let f be a real-valued function on the real line R, I be a closed interval,
and E be the set of points where f is differentiable. In [2], O’Malley proved
that if f is approximately differentiable at every xel, then

(xel: fi,(x) =4} # @
implies
Ixel: fi(x) =A} NnE # Q.

This result was extended in [3] to functions having approximate derivative
(finite or infinite) and satisfying a certain condition, which is weaker than
approximate continuity, on I. The purpose of the present paper is two-fold:
to examine firstly whether the above conclusion is still true if a countable
exceptional set is allowed for the existence of approximate derivative; and,
secondly, whether there is an analogous theorem for approximate symmetric
derivative £, and symmetric derivative f. The definitions of these deriva-
tives can be found in [1]. The answers to the questions are negative even
if the function f is continuous.

Before we proceed, we mention that there exists a sequence of intervals,
with positive endpoints converging to 0, whose union has 0 as a point of
dispersion. For example,

‘ I,=[27"2""(n+3)/(n+2)], n=1,2,...
The set

U [27"(n+3)/n+2), 271,
n=1

of course, has 0 as a point of right density.

THEOREM 1. There exists a continuous function f which is approximately
differentiable nearly everywhere and f, (0) =0, but

{x: f(,(x) =0} nE = Q.
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Proof. Let |x,) be a strictly decreasing sequence of positive numbers

a0
converging to O such that (J [x3,+1, X2,] has O as a point of right density.
n=1

We define f as follows:

x
2 : ( .
if xe IO: i U [x2n+l’x2n]u :x- X2 1:’

n=1

X

X if x=%4(x3,+X3,-4) for n=1,2, ...,
f(x) ={ linear on [x,,, $(x;,+ X2,-,)] and on

B(xzn"‘xz.n-x), Xap-1) forn=1,2,...,

f(—=x) if x<O.

Then
- ‘(h
fp(0) = lim apf(h) L lim AL 0,
h—0 h hea h
h -0
where
A= Ul [x2n+la x2n] (% Ul [—x2m —X2n+ l]'

However,

3 (X34 +X24-4)— 0 and f(’if(xzﬁ'xzn—l))/’if(xzn'i"xz"—l) -1

as n— oo. This shows that f'(0) does not exist.
Clearly,

E=R-}0}—{x: x = +x, or +3(x3,+X2,-4), n=1,2,...)

and f'(x) is either equal to 2x or the slope of some linear segment of the
graph of f. It follows that f'(x) # O for any xe E. The theorem is proved.

THEOREM 2. There exists a continuous function f which has a finite
approximate symmetric derivative £\ (x) at every x and f%)(0) = 0. Also, £ is
a Baire 1 function with Darboux property. Howeuver, ‘

x: ) (x) = 0} NEY = @,

E" being the set of points x where f is symmetrically derivable.
Proof. Let x, =1 and, for each positive integer n,

X, =2""  x,=2""(n+3)[(n+2), n=2""(3n+4)/(2n+3).
Thus x, < x, <&, < x,_, for each n. Let
z, =3(x,+x), z,=3%@E,+x) and 2z =4%(x,+2,).
In other words,

2z, =2""(2n+5)/2n+4), z,=2""(4n+11)/(4n+8)
and
zy =2""(4n+9)/(4n+8).
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We define two functions ¢, and ¥, on [0, 1] as follows:
3x fx=0o0rx=x, n=0,1,2,...,
o, (x)=<2x if xe[z,¢,],n=1,2,...,
linear on [x,, z,] and on [¢,. x,_,], n=1,2,...;
3x fx=0o0rx=x, n=012,...,
v, (x)=<2x if xe[z,,¢&]), n=1,2,...,
linear on [x,, z,] and on [¢,, x,_,], n=1,2,...
Clearly, ¢, =y, on [z,, x,—,] and, by simple calculation, their slope on
(Cns Xn—1) 18 _
(3/2)%-1 =2, 1
Xp_1—&, n+2
The slope of ¢, on (x,, z,) is
2z,—(3/2)x, _2n+10

zZ,—X, 3
and that of ¥, on (x,, z,) is
22"_
Zn =02 _ yp i,
Zp— Xy

Next we round off the “corners” of ¢, and ¥, to obtain functions ¢ and
¥ on [0, 1], respectively, so that the values at z, are not changed, ¢(x)
=y (x) on [x,, x,-,] for n=1,2,..., and ¢ and y are differentiable with
@' (x)>0, ¥ (x) >0 at every xe(0, 1].

Now we define f by
@(x) if xe[O0, 1],

Y(—x) if xe[—1,0),

x/3 if x>1,

—x/3 if x<-—1.

Then fis continuous on R and differentiable at every x # 0. At x = 0, since
@ =y on

fx)=

a0

A= U (x;n xn—l)

n=1
which has 0 as a point of right density, f(0+h)—f(0—h) = O for every he A.
It follows that f0’(0) =0.
For each n, z,e(x,, z;) on which ¢} =(2n+10)/3 and z,e(z), ,) on
which ] = 2. Therefore we have

2n+10 11n+28 1
f(z) =0z)=0,(2) = @, (x)+ 3 (z,—X,) = iy
2n+51

f(=z) =¥ () =¥ (z) =¥1 () + 2@ —2,) = nt2 2
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and

. f@)=f(=2zp) . —n=2 1 — {0
b M a0 127 0 e O
Since z,— 0 as n— oo, we see that f(0) does not exist.

Clearly, E” = R— {0}. In fact, we have f(x) = f’(x) > 0 at every x >0
and f”(x) = f'(x) <0 at every x <0. Consequently,

(x: fO(x) =0} "E" = Q.

To see that £ is Baire 1, we need only to observe that

SRI(R=10}) = f7

which is Baire 1 on R—1{0}. Finally, let ¢, be any point in (£,, x,-,) such
that ¢'(t,) = ¢)(t,) for each n. Then the sequence {t,! decreases to 0 and

1
lim £(t) = lim ¢/ (1,) = lim —— =0,

n—o n—w n—o N+ 2

while the sequence {—t¢,} increases to 0 and

lim £} (—t,) = lim (—y}(t,)) = — lim ?=0.
By a theorem of Young [4], £ has Darboux property. The proof is
completed.
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