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F-SINGULAR AND %-COSINGULAR OPERATORS

BY
JOE HOWARD (OKLAHOMA, OKLA.)

In this paper we generalize strictly singular and strictly cosingular
operators as given in [7]. This generalization will include not only strictly
singular and strictly cosingular operators, but also unconditionally con-
verging operators studied by Pelczynski in [6] and almost weakly compact
operators studied by Herman in [4].

We intend to preserve the notation of [2]. All spaces are to be Banach
spaces and all maps are to be continuous. If X and Y are Banach spaces,
then the conjugate spaces are denoted by X’ and Y’ respectively. Also
T’ is the adjoint operator to 7. By a class of Banach spaces we mean
Banach spaces with a given property.

Definition 0.1. Let # be a class of Banach spaces. An operator
T: XY is said to be F-singular provided that for no Banach space
F in & does there exist isomorphic embeddings ¢,: F - X and i,: F - Y
such that the diagram

b¢ >Y

iIs commutative.

Definition 0.2. Let ¢ be a class of Banach spaces. An operator
T: X —» Y is said to be ¥-cosingular provided that for no Banach space
G in ¢ does there exist epimorphisms %,: X -G and h,: ¥ - G such
that the diagram

is commutative.
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If # (resp., ) consists of only one Banach space E, then we shall
say that T is E-singular (resp. E-cosingular). '

We recall that a linear operator 7: X — Y is weakly compact if it
maps bounded sets in X into weakly sequentially compact sets. T': X - Y
is almost weakly compact if, whenever T has a bounded inverse on a closed
subspace M of X, then M is reflexive. Note that every weakly compact
operator is almost weakly compact. A linear operator T: X — Y is said
to be unconditionally converging (uc operator) if it sends every weakly
unconditionally converging series in X into an unconditionally converging
series in Y. In [5] it is shown that T: X — Y is a uc operator if and only
if 7 has no bounded inverse on a subspace F of X isomorphic to ¢,.

1. #-singular operators. Properties for #-singular operators are now
given.

PRrROPOSITION 1.1. Let F and F' be classes of Banach spaces. Suppose
for every F in F there exists an E in F' such that E 1is isomorphic
(linearly homeomorphic) to F, and conversely, for every E in F' there exists
an F in F such that F is isomorphic to E. Then T is F-singular if and only
if T is F'-singular.

The proof is clear.

Remark 1. An equivalent condition is:

A linear operator T': X — Y is #-singular if whenever T has a bounded
inverse on M, a closed subspace of X, M does not belong to #.

Remark 2. (a) If & is the class of all infinite-dimensional Banach
spaces, T is #-singular if and only if T is strictly singular (see [7]).

(b) If # is the class of all non-reflexive Banach spaces, T is #-singular
if and only if T is almost weakly compact.

(¢) If # is the class of all Banach spaces isomorphic to ¢,, T is
Z-singular if and only if T is a uc operator.

Remark 3. If #, < #,, where #, and %, are classes of Banach spaces,
then T #,-singular implies 7' % ,-singular. Hence if T is strictly singular,
T is almost weakly compact and if T is almost weakly compact, T is a uc
operator.

PROPOSITION 1.2. The set of F-singular operators is closed in the uniform
operator topology of L(X, Y).
The proof is similar to that given for theorem III. 2.4 in [3].

PRrROPOSITION 1.3. Let TeL(X,Y) be F-singular; and let 0 # Re
L(X, Z) and 0 = SeL(V, X). Then RT and TS are F-singular.

Proof. Suppose RT has a bounded inverse on a subspace N of X.
Then there exists a ¢ > 0 such that, for all # in N,

IBIHIT (@)l = | BT ()] = elll.
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Thus T has a bounded inverse on N, whence N does not belong to #.
Therefore, RT is #-singular.

Suppose T'S has a bounded inverse on a subspace M of V. Then
there exists a ¢ > 0 such that, for all # in M,

c
T8 (w)l| = ¢|lwll = e 18 (@)

Thus 7 has a bounded inverse on S(M), and therefore S(M) does
not belong to #. But § is 1-1 on M since T'S is 1-1 on M, and since
8! =(T8)™'-T, 8! is continuous on S(M). So S(M) is isomorphic to
M, and by proposition 1.1, T'S is #-singular.

Example 1.4. If T and S are F-singular, then 8+ T is not necessarily
F-singular.

Proof. Let # be the class of all Banach spaces isomorphic to J X J
where J denotes the James space (see [1]). Let 8 and T be the natural
projections of J X J onto J regarded as subspaces J X 0 and 0 X J of J-
Then S+ T is the identity operator, hence it is not (J X J)-singular. Now
from section 2 of [1] there cannot be an isomorphic embedding from
J x J into J such that the diagram is commutative. This implies 8 and
are (J X J)-singular.

2. Y-cosingular operators. If ¥, = ¢,, where ¢, and ¥, are classes
of Banach spaces, then T %,-cosingular implies T ¥,-cosingular. If ¢ if
the class of all infinite-dimensional Banach spaces, T' is %-cosingular is
and only if 7 is strictly cosingular (see [7]). If ¢ is the class of all Banach
spaces isomorphic to M, we call T an M-cosingular operator.

PRrROPOSITION 2.1. The set of ¥-cosingular operators is closed in the
uniform operator topology of L(X, Y).

The proof is similar to that given for proposition 1 of [7].

ProOPOSITION 2.2. Let Te L(X, Y) be 9-cosingular; and let 0 #« Re L(Y, Z)
and 0 #= SeL(V, X). Then RT and TS are 9-cosingular.

The proof is clear.

Example 2.3. If T and S are 9-cosingular, then S+ T is not necessarily
G-cosingular.

- Proof. § and T defined as in example 1.4 will be (J X J)-cosingular
but S+ T will not be.

3. Duals. Dual relations between singular and cosingular are now
considered.

ProPOSITION 3.1. Let T: X — Y and let F and ¥ be classes of Banach
spaces.
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(a) If the dual of every G in ¥ contains a Banach space FinF , and
if T' is F-singular, then T is G-cosingular.

(b) If the dual of every F in F contains a Banach space G in ¥, and
if T' is %-cosingular, then T is F-singular.

The proof is based on the fact the operator adjoint to an epimorphism
(isomorphic embedding) is an isomorphic embedding (epimorphism). (See
theorems II. 3.11 and II. 3.13 of [3].)

COROLLARY 3.2. Let T: X — Y.

(a) If T is F-singular, then T is F-singular.

(b) If T'"" is %-cosingular, then T is F-cosingular.

Remark 4. The converses to proposition 3.1 (and corollary 3.2)
are not true since, in particular, they are not true for strictly singular
and strictly cosingular operators. See examples 1 and 2 in [8].

4. Theorems on particular operators. In beginning we define an
AWC-cosingular operator. AWC is an abbreviation for almost weakly
compact.

Definition 4.1. If ¢ is the class of non-reflexive Banach spaces in
definition 0.2, we call T an AWC-cosingular operator.

ProposITION 4.2. If T: X — Y 48 weakly compact, then T is AWC-
cosingular.

Proof. If T is weakly compact, T’ is weakly compact and hence
T’ is almost weakly compact. Now by proposition 3.1 (a), 7 is an AWC-
cosingular operator.

COROLLARY 4.3. Let T: X -~ Y and M any non-reflexive Banach space.
If T is weakly compact, then T is M-cosingular.

Remark 5. (a) The statement of corollary 4.3 is also true for M-sin-
gular operators (M non-reflexive), for if 7 is weakly compact, T is almost
weakly compact and hence M-singular by remark 3.

(b) For uc operators, a characterization is given in proposition 1 of
[8]. This can be stated as: T: X — Y is an [l,-cosingular operator if and
only if 7" is a uc operator. Another result on uc operators is the following

PROPOSITION 4.4. Let T: X — Y and suppose Y is a separable Banach
space. Then if T is a cy-cosingular operator, T is also a uc operator.

Proof. We show that if T is not a uc operator, then 7 is not a ¢,-cosin-
gular operator. So assume 7 is not a uc operator. Then there exists in
X a subspace E isomorphic to ¢, and such that 7| E is an isomorphism
between F and T (E). Therefore, there exists an isomorphism, say i, between
T(E) and c,. Since Y is separable there exists a continuous linear projection
p from Y onto its subspace T(FE) isomorphic to ¢,. This follows from
theorem 4 of [9]. Let hy =ip: ¥ -¢, and h, = hy-T: X - ¢,. Then
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h, and h, are the required epimorphisms. Hence T is not a ¢,-cosingular
operator.

It is now shown that proposition 4.4 is not true in general for an
arbitrary Y.

ExAMPLE 4.5. If T i8 cy-cosingular, then T is nmot necessarily a wuc
operator.

Proof (see example 2 of [8]). Let J: ¢, — ¢, = I, be the canonical
embedding. Then by proposition 5 of [7], the operator J is strictly
cosingular, hence c¢,-cosingular. But, clearly, J is not a uc operator since
J has a bounded inverse on ¢,.
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