UN ENSEMBLE REMARQUABLE DU POINT DE VUE DE L'ANALYSE DE FOURIER SUR Q_n

PAR

J.-P. SCHREIBER (ORSAY)

Soit Q_p le groupe additif localement compact des nombres p-adiques, Z_p le sous-groupe des entiers p-adiques. On désigne par Z(p) le groupe des rationnels s'écrivant q/p^r (où q et r sont des entiers relatifs). On notera parfois de la même manière, par abus de notations, les images canoniques de ce groupe dans Q_p ou dans le groupe des réels R.

L'image dans Q_p de $Z(p) \cap [0, 1[$ est un fermé de Q_p , régulièrement réparti dans le sens où toute boule de rayon 1 de Q_p le rencontre en un point et un seul. On se propose de montrer ici que cet ensemble, qu'on notera \mathcal{Z} , possède, du point de vue de l'analyse de Fourier beaucoup de propriétés analogues à celles du groupe des entiers Z, dans R.

On donne d'abord quelques propriétés des fonctions continues sur Q_p à spectre dans Ξ , ce qui permet d'obtenir la propriété de synthèse spectrale pour les ensembles parfaits homogènes de Q_p du type $\sum_{k=1}^{\infty} \varepsilon_k p^k$, ($\varepsilon_k = 0$ ou 1). Ensuite (§ 5 et 6), par "enroulement" de Q_p sur le solénoïde p-adique on étudie la fermeture de Ξ dans le compactifié de Bohr ainsi que les limites uniformes sur Ξ de caractères.

1. L'ensemble \mathcal{Z} est un spectre régulier. On choisit la mesure de Haar sur Q_p , m, de façon que $m(Z_p) = 1$; d'autre part H_p désignant le caractère continu sur Q_p valant $\exp 2i\pi\lambda$ pour tout λ de Z(p), on identifiera Q_p avec son groupe dual en associant à x de Q_p le caractère $y \to (x, y) = H_p(xy)$.

Définition (cf. [1], p. 297). Une partie Λ de Q_p est un spectre régulier s'il existe un compact K de Q_p (compact associé à Λ) et un nombre $\varepsilon < 1$ tels que pour tout polynôme trigonométrique P à spectre dans Λ , on ait

$$\sup_{x \in K} |P(x)| \geqslant (1 - \varepsilon) \sup_{x \in Q_p} |P(x)|.$$

Pour $\Lambda = \Xi$, nous avons le

Théorème 1. Si Ω est un ouvert borné de \mathbf{Q}_p , de mesure de Haar strictement supérieure à 1, sa fermeture $\overline{\Omega}$ est un compact associé à Ξ

Quitte à remplacer Ω par un ouvert un peu plus petit on peut toujours supposer qu'il est réunion finie de boules ouvertes disjointes (et de mesure strictement supérieure à 1).

La démonstaration repose alors sur le lemme suivant:

LEMME. Si Ω est une réunion finie de boules ouvertes bornées de Q_p , l'image canonique de $\Omega \cap Z(p)$ dans R est une suite régulière Σ de densité uniforme $m(\Omega)$, c'est-à-dire:

a)
$$\inf_{x,x'\in\Sigma}|x-x'|\geqslant\delta>0$$
,

b)
$$\lim_{T\to\infty}\frac{1}{2T}\operatorname{card}\{\sum\cap[a-T,a+T]\}=m(\Omega),$$

uniformément par rapport à a.

Démonstration du lemme: Si Ω est une boule de rayon p^{-N} , Σ est une progression arithmétique de différence p^N donc de densité uniforme $p^{-N} = m(\Omega)$. On passe trivialement au cas d'une réunion de boules disjointes.

Montrons maintenant le théorème 1: Soit R un polynôme trigonométrique à spectre dans \mathcal{Z} , et soit \tilde{P} le prolongement continu à R de la restriction de P à Z(p). Ce prolongement est un polynôme trigonométrique sur R à spectre dans $Z(p) \cap [0, 1[$. On a alors

$$\sup_{x \in \mathbf{Q}_{\mathbf{p}}} |P(x)| = \sup_{x \in \mathbf{Z}(p)} |P(x)| = \sup_{x \in \mathbf{R}} |\tilde{P}(x)|.$$

Or il résulte du théorème de Paley et Wiener (cf. [5], § 5, th. 4) que pour toute suite Σ régulière de densité uniforme strictement supérieure à 1, il existe une constante positive c telle que

$$\sup_{x \in \Sigma} |\tilde{P}(x)| \geqslant c \quad \sup_{x \in R} |\tilde{P}(x)|.$$

D'où le résultat en appliquant le lemme:

$$\sup_{x\in\Omega}|P(x)|\geqslant c\sup_{x\in\mathcal{Q}_p}|P(x)|\,,\quad \text{ et } \overline{\varOmega} \text{ est associ\'e `a'}\,\,\varXi.$$

Nous allons montrer maintenant que la taille des compacts associés à Ξ donnée par le théorème 1 ne peut être améliorée, et cela en utilisant un théorème d'isomorphisme d'algèbres de restrictions (introduit dans [3]), pour prouver que \mathbb{Z}_n n'est pas associé à Ξ .

Selon l'usage on désignera par A(G) l'algèbre des transformées de Fourier des fonctions intégrables sur le dual du groupe G et, pour un fermé E de G, par A(E) l'algébre des restrictions à E des fonctions de A(G) (cf. [6]).

PROPOSITION 2. Si p^N est le diamètre d'un compact K associé à Ξ , et B une boule de rayon p^{-N} , les algèbres $A(\Xi+B)$ et $A(\Xi\times B)$ sont isomorphes.

Démonstration. Suivant la méthode de [3], théorème 1, il suffit de montrer qu'il existe une constante $\varepsilon < 1$ telle que, pour toute famille $\{f_{\lambda}\}$ de fonctions continues sur Q_p tendant vers 0 à l'infini, et à spectre dans B (i.e. dont la transformée de Fourier a son support dans B), λ décrivant une partie finie quelconque de Ξ , on ait

$$\sup_{x \in \mathbf{Q}_p} \Big| \sum_{\lambda} f_{\lambda}(x)(\lambda, x) \Big| > (1 - \varepsilon) \sup_{x, y \in \mathbf{Q}_p} \Big| \sum_{\lambda} f_{\lambda}(x)(\lambda, y) \Big|.$$

Choisissant alors x_0 et y_0 tels que

$$\Big| \sum_{\lambda} f_{\lambda}(x_0)(\lambda, y_0) \Big| > (1 - \varepsilon)^{1/2} \sup_{x, y \in Q_p} \Big| \sum_{\lambda} f_{\lambda}(x)(\lambda, y) \Big|,$$

on peut trouver, puisque $x_0 + K$ est associé à \mathcal{Z} , un point y_0' vérifiant $|y_0' - x_0|_p \leq p^N$ et

$$\Big|\sum_{\lambda} f_{\lambda}(x_0)(\lambda, y_0')\Big| > (1-\varepsilon)^{1/2} \Big|\sum_{\lambda} f_{\lambda}(x_0)(\lambda, y_0)\Big|.$$

Mais les fonctions f_{λ} ayant leur spectre dans B, leurs transformées de Fourier \hat{f}_{λ} sont les translatées de fonctions à support dans la boule de centre 0 et de rayon p^{-N} . Or une fonction dont le spectre est dans cette boule est constante sur toute boule de rayon p^{N} . Donc il existe un caractère χ ne dépendant que de B tel que

$$f_{\lambda}(a) \doteq f_{\lambda}(b) \chi(a-b),$$

dès que $|a-b|_p \leqslant p^N$. Donc

$$\left|\sum_{\lambda}f_{\lambda}(x_{0})(\lambda, y_{0}')\right| = \left|\sum_{\lambda}f_{\lambda}(y_{0}')(\lambda, y_{0}')\right|,$$

ce qui donne (*).

COROLLAIRE. La boule \mathbf{Z}_p n'est pas un compact associé à $\boldsymbol{\Xi}$.

En effet, s'il en était ainsi, on aurait un isomorphisme continu de $A(\Xi \times \mathbf{Z}_p)$ sur $A(\Xi + \mathbf{Z}_p)$. Mais comme $\Xi + \mathbf{Z}_p = \mathbf{Q}_p$, il résulterait un homomorphisme continu surjectif de $A(\mathbf{Q}_p \times \mathbf{Z}_p)$ sur $A(\mathbf{Q}_p)$. Or, d'après le théorème de P. J. Cohen, (cf. [6], 4.3.1.) cela n'est pas possible puisque l'application de \mathbf{Q}_p dans $\mathbf{Q}_p \times \mathbf{Z}_p$ définie par $\xi \to (\lambda, \zeta)$ avec $\lambda \in \Xi, \zeta \in \mathbf{Z}_p$ et $\lambda + \zeta = \xi$, n'est pas affine.

2. Application aux fonctions à spectre dans \mathcal{Z} . Une fonction f sur Q_p est à spectre dans \mathcal{Z} si c'est la transformée de Fourier d'une distribution T portée par \mathcal{Z} ; du théorème 1 il résulte qu'une telle fonction est connue

dès qu'on connait sa restriction à un ouvert de mesure supérieure à 1, comme le montre, en particulier, la

PROPOSITION 3. Soit T une distribution sur Q_p , portée par Ξ et \hat{T} sa transformée de Fourier. Si la restriction de \hat{T} à un ouvert Ω de mesure supérieure à 1 est une fonction continue f, \hat{T} est une fonction uniforménent continue sur Q_p .

Démonstration. On peut toujours supposer Ω borné. Soit ψ_n la fonction caractéristique de la boule $p^{-n} \mathbf{Z}_p$ et $T_n = \psi_n \cdot T$. Les polynômes trigonométriques $\hat{T}_n = \hat{\psi}_n * \hat{T}$ convergent uniformément vers f sur un ouvert Ω' , de mesure > 1, et réunion d'un nombre fini de boules ouvertes. Comme \hat{T}_n est à spectre dans Ξ et que d'après le théorème 1

$$\sup_{x \in \Omega'} |\hat{\boldsymbol{T}}_n(x) - \hat{\boldsymbol{T}}_m(x)| \geqslant C \sup_{x \in \mathbf{Q}_p} |\hat{\boldsymbol{T}}_n(x) - \hat{\boldsymbol{T}}_m(x)|$$

il résulte que les \hat{T}_n convergent uniformément sur Q_p et donc que \hat{T} est une fonction uniformément continue.

De la même manière, on montrerait, avec les hypothèses de la proposition 3, que si \hat{T} satisfait une condition de Lipschitz d'ordre α sur un ouvert de mesure > 1, \hat{T} est lipschitzienne d'ordre α sur Q_n .

On peut voir facilement d'autre part que si K est un compact associé à \mathcal{Z} , à toute mesure à support compact μ , on peut faire correspondre une mesure $\tilde{\mu}$ portée par K, telle que $\int f d\mu = \int f d\tilde{\mu}$ pour toute fonction f continue à spectre dans \mathcal{Z} . En particulier, si on prend pour K le sous groupe $1/p \mathbb{Z}_p$, on obtient:

PROPOSITION 4. A tout élément λ de 1/p Ξ on peut faire correspondre une mesure μ_{λ} portée par 1/p \mathbf{Z}_p telle que pour toute fonction continue f à spectre dans Ξ on ait

$$\forall x, |x|_p \leqslant p \ f(\lambda+x) = \int_{\frac{1}{p}Z_p} f(x+h) d\mu_{\lambda}(h),$$

et de façon que si $\lambda + \lambda' \in 1/p\Xi$, alors $\mu_{\lambda} * \mu_{\lambda'} = \mu_{\lambda + \lambda'}$.

3. Application à la synthèse spectrale pour certains ensembles parfaits homogènes de Q_p . Pour un entier $l, \ 0 < l \leqslant p$, on note E_l l'ensemble des sommes $\sum_{k=0}^{\infty} \varepsilon_k p^k$, où ε_k est entier et $0 \leqslant \varepsilon_k < l$. On a alors la proposition suivante.

Théorème 5. Les ensembles E_l sont de synthèse spectrale dans Q_p .

Si l = p, $E_l = \mathbb{Z}_p$ qui est un sous-groupe de \mathbb{Q}_p . Si l < p, E_l est un ensemble parfait, homogène (cf. [2], chap. I pour les définitions).

Pour chaque entier positif n notons χ_n la fonction valant p^n sur le sous-groupe $p^n \mathbb{Z}_p$ et nulle ailleurs, $\chi_n^{\lambda}(x) = \chi_n(x-\lambda)$, et Λ_n l'ensemble

des $\sum_{k=0}^{n-1} \varepsilon_k p^k$ où $0 \le \varepsilon_k < l$. La mesure de Dirac au point λ est notée δ^{λ} . A toute pseudo-mesure S portée par E_l associons les suites de mesures

$$S_n = rac{1}{p^n} \sum_{\lambda \in A_n} \langle S, \chi_n^{\lambda}
angle \chi_n^{\lambda} \quad ext{ et } \quad T_n = rac{1}{p^n} \sum_{\lambda \in A_n} \langle S, \chi_n^{\lambda}
angle \delta_{\lambda}.$$

Soit φ une fonction de $A(Q_p)$, constante et égale à c_{λ} sur l'ensemble $\lambda + p^m Z_p$, pour chaque $\lambda \in \Lambda_m$. Pour $n \ge m$ on peut décomposer tout élément λ de Λ_n en somme: $\lambda = \lambda_m + \varepsilon_m$ où $\lambda_m \in \Lambda_m$ et $|\varepsilon_m|_p \le p^{-m}$. On a alors pour $n \ge m$

$$\varphi = \sum_{\lambda \in A_n} c_{\lambda_m} p^{-n} \chi_n^{\lambda},$$

et

$$\langle S, \varphi \rangle = \sum_{\lambda \in A_n} c_{\lambda_m} p^{-n} \langle S, \chi_n^{\lambda} \rangle.$$

D'où, d'une part

$$\langle S, \varphi \rangle = \sum_{{\scriptstyle \lambda \in \varLambda_n}} \, p^{-n} \langle S, \, \chi_n^{{\scriptstyle \lambda}}
angle \langle \delta^{{\scriptstyle \lambda}}, \, \varphi
angle = \langle T_n, \, \varphi
angle,$$

et d'autre part

$$\langle S, \varphi \rangle = \sum_{\lambda \in A_n} \langle S, \chi_n^{\lambda} \rangle p^{-n} \int \chi_n^{\lambda}(x) \varphi(x) dm(x) = \langle S_n, \varphi \rangle.$$

Ces fonctions localement constantes forment un ensemble dense dans $A(Z_p)$; il suffit donc de montrer que les normes $\|T_n\|_{p.m.} = \sup_{\xi \in \mathcal{Q}_p} |\hat{T}_n(\xi)|$ sont uniformément bornées pour déduire que $T_n \to S$ dans la topologie faible des pseudo-mesures. On aura alors obtenu que toute pseudo-mesure S portée par E_l est limite faible d'une suite de mesures portées par E_l , (et même ici d'une suite de mesures définies à partir de S par un procédé linéaire explicite), ce qui entraîne la propriété de synthèse spectrale (cf. [2], p. 115). De même $\|S_n\|_{p.m.}$ uniformément borné entrainera $S_n \to \infty$.

Or on a $||S_n||_{p.m.} = ||S * \chi_n||_{p.m.} \le ||S||_{p.m.}$, ce qui donne déjà, pour le cas l = p, une suite simple de mesures portées par E_l , convergeant vers S faiblement. Pour le cas l < p, montrons qu'il existe une constante positive C telle que, pour tout n et tout a_k complexes, on ait:

$$\Big\| \sum_{\lambda \in \Delta_n} a_\lambda \chi_n(x-\lambda) \, \Big\|_{\mathbf{p.m.}} \geqslant C \, \Big\| \sum_{\lambda \in \Delta_n} a_\lambda \, \delta(x-\lambda) \, \Big\|_{\mathbf{p.m.}}.$$

Par changement de variable, cela équivaut à

$$\left\| \sum_{\lambda \in p^{-n} \Delta_n} a_{\lambda} \chi_0(x-\lambda) \right\|_{p.m.} \geqslant C \left\| \sum_{\lambda \in p^{-n} \Delta_n} a_{\lambda} \delta(x-\lambda) \right\|_{p.m.}.$$

Or la fonction f, transformée de Fourier de $\sum_{\substack{\lambda \in p^{-n}A_n}} a_{\lambda} \delta(x-\lambda)$ et la fonction g, transformée de Fourier de $\sum_{\substack{\lambda \in p^{-n}A_n}} a_{\lambda} \chi_0(x-\lambda)$ coincident sur \mathbb{Z}_p . D'autre part, la fonction f ayant son spectre dans l'ensemble

$$Z(p) \cap \left[0, \frac{l-1}{p-1}\right],$$

et Z_p ayant la mesure 1, on voit comme au théorème 1 que, pour l < p, il existe une constante C telle que

$$\sup_{x \in \mathbf{Z}_p} |f(x)| \geqslant C \sup_{x \in \mathbf{Q}_p} |f(x)|$$

d'où

$$\sup_{x \in \mathbf{Q}_p} |g(x)| \geqslant C \sup_{x \in \mathbf{Q}_p} |f(x)|.$$

Finalement on obtient, pour tout $n \ge 1$, en prenant $a_{\lambda} = \hat{S}(\lambda)$,

$$C \|T_n\|_{\text{p.m.}} \leqslant \|S_n\|_{\text{p.m.}} \leqslant \|S\|_{\text{p.m.}},$$

ce qui prouve que lorsque l < p, les mesures discrètes T_n portées par E tendent faiblement vers S.

4. Fermeture de \mathcal{Z} dans le compactifié de Bohr de Q_p . Pour la topologie induite sur R par celle de son compactifié de Bohr, les seuls points de R adhérents à Z sont les points de Z lui-même. Nous allons voir maintenant que \mathcal{Z} possède, à un point près, cette propriété.

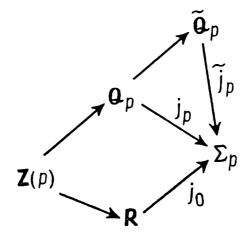
Posons
$$\boldsymbol{\mathcal{Z}}^* = \boldsymbol{Z}(p) \cap [0,1].$$

PROPOSITION 6. Dans la topologie induite sur Q_p par celle de son compactifié de Bohr Q_p , les points d'accumulation de Ξ sont les points de Ξ^* .

Montrons d'abord que \mathcal{Z}^* n'a pas de point isolé pour la topologie de Bohr sur Q_p .

Il suffit pour cela de montrer que 0 n'est pas un point isolé de \mathcal{Z}^* ; et pour voir cela il suffit de se donner un homomorphisme continu quelconque, h, de Q_p dans une puissance du cercle T^N , et de considérer que
pour tout voisinage ϑ de 0 dans T^N on peut trouver α et β dans \mathcal{Z}^* , avec $\alpha - \beta \in \mathcal{Z}^*$, $\alpha - \beta \neq 0$ et $h(\alpha - \beta) \in \vartheta$.

Montrons maintenant que \mathcal{Z}^* n'a pas d'autre point d'accumulation que ses propres points. Pour cela soit Σ_p le groupe compact dual du groupe discret $\mathbf{Z}(p)$ et j_p (resp. j_0) l'injection de \mathbf{Q}_p dans Σ_p (resp. de \mathbf{R} dans Σ_p) duale de l'injection canonique de $\mathbf{Z}(p)$ dans \mathbf{Q}_p (resp. de $\mathbf{Z}(p)$ dans \mathbf{R}). On peut tracer le diagramme commutatif:



où \tilde{j}_p est le prolongement canonique de j_p à $\tilde{\boldsymbol{Q}}_p$.

Soit E l'adhérence dans Σ_p de $j_p(\Xi^*)$. Comme dans la première partie on voit que $E=j_0([0,1])$. Or $j_p(Q_p)\cap j_0([0,1])=j_p(\Xi^*)$. En relevant E dans \tilde{Q}_p à l'aide de \tilde{j}_p , on obtient donc que les seuls points de Q_p adhérents à Ξ^* pour la topologie de Bohr sont les points de Ξ^* lui-même.

5. Approximation uniforme sur \mathcal{E} des caractères non continus de Q_p . Rappelons une dernière propriété de \mathcal{E} , plus forte que celle d'être un spectre régulier (cf. [5], § 1, Théorème 1), et que Z possède trivialement:

PROPOSITION 7 ([7], prop. 1). Tout caractère faible (homomorphisme non nécessairement continu de Q_p dans T) est limite uniforme sur Ξ de caractères continus.

Une preuve très élémentaire figure dans [8]; nous allons ici appliquer les méthodes géometriques du § 4. La restriction à \mathcal{E} d'un caractère faible de Q_p est déterminée par la donnée d'un caractère sur le groupe discret $\mathbf{Z}(p)$ engendré par \mathcal{E} , c'est à dire par un point σ de Σ_p .

Soit k un entier et V(k) l'ensemble des éléments ψ de Σ_p vérifiant $|\psi(\lambda)-1| \leq p^{-k}$ pour tout λ de Ξ ; V(k) est un compact qui contient en particulier $j_p(p^{-k}\Xi)$. Il en résulte que le compact $V(k)+j_p(p^{-k}Z_p)$ contient $j_p(Q_p)$ qui est dense dans Σ_p , et donc contient Σ_p tout entier.

Au caractère σ on peut donc associer un χ de $p^{-k} \mathbb{Z}_p$ tel que

$$\sigma - j_p(\chi) \in V(k)$$

c'est-à-dire

$$\sup_{\lambda \in \mathcal{Z}} |\sigma(\lambda) - \chi(\lambda)| \leqslant p^{-k};$$

ce qui prouve la proposition.

TRAVAUX CITÉS

- [1] J.-P. Kahane, Sur les fonctions moyennes—périodiques bornées, Annales de l'Institut Fourier 7 (1957), p. 293 314.
- [2] et R. Salem, Ensembles parfaits et séries trigonométriques, Paris 1963.
- [3] Y. Meyer, Isomorphismes entre certaines algèbres de restrictions, Annales de l'Institut Fourier 18 (1968), p. 73 86.
- [4] Les nombres de Pisot et l'analyse harmonique, à paraître aux Studia Mathematica.
- [5] Nombres de Pisot, nombres de Salem et analyse harmonique, Collège de France, Cours Peccot 1969. Lecture notes in math. n° 117, Berlin 1970.
- [6] W. Rudin, Fourier analysis on groups.
- [7] J.-P. Schreiber, Sur les nombres de Chabauty-Pisot-Salem des extensions algébriques de Q_p , Comptes rendus de l'Académie des Sciences, Paris 1969, t. 269, p. 71.
- [8] Application de la méthode d'Y. Meyer à une caractérisation des nombres de Pisot-Chabauty, Séminaire Delange-Pisot-Poitou, Paris 1969.

Reçu par la Rédaction le 29. 12. 1969