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A MODEL WITH EXACTLY ONE UNDEFINABLE ELEMENT*®
BY

GEBHARD FUHRKEN (MINNEAPOLIS, MINN.)

TurorREM. There is a relational structure W which has finitely many
fundamental relations and is such that exactly one of the elements of its
universe is not first-order definable ().

91 can be chosen so that its first-order theory is recursively axio-
matizable. The question whether 2 can even be chosen so that its theory
is finitely axiomatizable remains open.

" The structure A will be of the form <4, S, E)> where

(i) A is the (disjoint) union of the set N of finite ordinals and a set M

of subsets of N;

(ii) § is the successor relation on N, ie. 8 = {(n,n+41>:neN};

(ili) ¥ is the membership relation between elements of N and the
elements of M, i.e.

E={n,s>:neN &seM & nesj.

Thus in order to specify A we only have to choose M. Note that
each element of N is definable in ; also each element of M which is
periedic (2) (or differs from a periodic set by finitely many elements)
is definable in A. We now prepare for the definition of M.

LEMMA 1. Let {{(@,, y,>: ne N> be an enumeration of all disjoint pairs
of finite subsets of N. There is a sequence {s,: neN) of subsets of N satisfying
the following conditions:

(1) s, is periodic with minimal period, say, p,;

(2) p. (properly) divides p,,  1;

* N.8.I'. Grant GP 1612.

(1) The question whether such structures exist was raised in a seminar of
J. Myecielski and €. Ryll-Nardzewski at the University of Wroctaw. The author learnt
about this problem through Jan Myecielski and is indebted to him for pointing out
the flaws in earlier attempts to solve the problem.

(2) A subset A of N is periodic with period p for all veN, ve A if and onl+ 7f

v+ped.
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(3) Ty v Yn S Pan(={0,1, ..., Pan—1}), Ty < 83, ARd Yy ~ 89, = O
(4) Syn,3 begins with two copies of the imitial period of 8, ,, i.e.

Sants M {0, ooy 2Pon 1 —1}
= (San11 ™ Pans1) v {Pans1+7: VeESopy1y ¥V < 2P2n+1};

(5) For each finite interval x of N of length n and each subset z of x
there is an interval y of N with y < p, and for which the structures {x, <, s, ~
ALyiey 8y 1 AT, and Y, <, 8~ Yy .ouy Sy~ Y are isomorphic.

The proof proceeds via induction on ». In the choice of s, one first
takes care of (3) and (4), then of (5), and finally of (2) and (1).

Let {s,:neN)> be a sequence as obtained from Lemma 1. Put
8o = U {Sany1 » Pany1: neN}, and define M = {s,,..., s,}.

LEMMA 2. For each finite subset & of N there is an neN, in fact infi-
nitely many, for which © < p,, and s, ~ p, = 8, ~ p,. Hence, in view
of Lemma 1.2, s, is not periodic, and thus distinct from s,, s, ..

We still have to prove that s, is not definable in 9. For this purpose
we prepare for the elimination of quantifiers in the first-order theory
of (a definitorial expansion of) .

LEMMA 3. For any finite interval  of N, any finite sequence {t,, ..., t,>
of elements of M, and any finite subset z of N there is an interval y of N
with ¥y ~ 2z = O and being such that the structures (&, <,ty ~ &, ..., t, ~ 2>
and Y, <, to Y,y .oy by ~ Y> are isomorphic.

The proof is based on Lemma 1.1 and, in case s, is involved, on 1.2,
1.4 and Lemma 2.

LEMMA 4. Given a finite interval & of N of length n and a sequence
{Zgy -++y 2m> Of subsets of . For any sequence (i, ..., t,> of distinct elements
of M other than s,, ..., 8, there is an interval y of N such that the structures
By Sy 8 N Byeeny 8y "Wy Rgyeoey@m) GRA Yy <, 8 A Yyerny8nnY, B9
AYyeueytm ~ Y> are isomorphic.

The proof is based on Lemma 1.5 and, in case s, is involved, also
on Lemma 2.

LEMMA 5. Given a pair {x,y) of disjoint finite subsets of N and
a finite subset X of M. There is an neN such that s,¢X, @ < $,, Y ~ 8, = O,
and <y < p,.

The proof is based on Lemma 1.3.

Let %* be obtained from %A by expanding A with the following de-
finable relations and distinguished elements:

(i) each element of N and each element of M other than s, as a distin-
guished element;

(ii) ¥ and M as one-place relations;
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(iii) for each integer g the relation 8% = {<(n, m)>: neN & meN & m
=n+4g};.

(iv) for each integer ¢ the relation S8’E = {(n,s)>: for some m
n,mye8’ & {(m, s> ekl}.

Clearly an element of A4 is definable in U if and only if it is definable
in A*.

LuMMA 6. In the first-order theory of W' quantifiers can be eliminated.

By general reasoning on elimination of quantifiers it suffices to con-
sider formulas of the form {Hv®, where @ is a conjunction of atomic or
negated atomic formulas. Since N and M partion the universe we may
assume that one of two cases holds: (a) Nv is a conjunct of @; (b) Mwv
is a conjunct of @. In case (a) we may further assume that @ describes
a situation as in Lemma 3. The interval x is an interval around v, the
length of # being determined by the ¢’s occurring in the atomic formulas
of @. In addition the “variable elements” belonging to M may be required
to be distinet from s, ..., s,, n the length of z. By Lemma 3 we can ignore
conjuncts of the form T]v8”... and by Lemma 4 we can settle the truth-
value of the rest. In case (b) we can assume that @ describes the situa-
tion of Lemma 5 and can settle the truth-value on the basis of that lemma.

That s, is indeed not definable in WA now follows from Lemma 6
and Lemma 2.

In a similar way one can show that given a finite cardinal m there
is a relational structure 9 with finitely many relations and a m-element
subsett X of the universe of A such that every m-element subset of the
universe of A is definable in U if and only if it does not intersect X.
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