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ON CERTAIN CHARACTERIZATIONS
OF DISTRIBUTIVE LATTICES

BY

K. GLAZEK (WROCLAW)

The purpose of this note is to give two characterizations of distri-
butive lattices with zero and unity: first in the clags of semirings and
then in the class of positive semirings.

(85 -+, -) is a semiring if two binary associative operations are defined
on a set §, addition + and multiplication -, and if a two-sided law of
distributivity of the multiplication with regard to the addition is
satisfied :

a(b+4c¢) =ab+ac, (b+e)a = ba+ca

for cvery a, b, ceS.

The notion of a semiring was first introduced by Vandiver
in [5]. He also gave examplcs of semirings which cannct be imbcd-
ded in a ring [6]. Obviously, every ring and every distributive lattice
Is a semiring.

The sets of natural numbers, of cardinal numbers not greater than
a certain fixed cardinal number m, of endomorphisms of an arbitrary
additive medial semigroup [2], of continuous real non-negative func-
tions defined on a topological space, of non-negative upper (resp. lower)
semicontinuous real functions defined on a topological space, each con-
sidered together with usual operations, are further examples of semirings.

The set of ideals of a commutative ring with complex operations
(see [7], p. 22-23), and a meta-abelian group with commutation as the
second operation are also semirings.

In Theorem 1 we shall assume that both semigroups (S; +) and
(8; ) have neutral elements zero and unity, i.e. elements 0 and eeS
such that

0+a =a+4+0=a =¢ea = ae for every aeS.
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It is worthwhile to remark that neutral element with regard
to addition in a semiring need not to have the property of zero with
regard to multiplication. This can be seen on a set 8§ = {0, a} with
operations

+i0(z |Oa
O‘Oa Ola a

a |a a aiaa

Clearly, if a semiring has unity e, then element 0 must be the mul-
tiplicative idempotent.

THEOREM 1. A semiring with 0 and ¢ is a distributive lattice (with
zero O and unity e) if and only if the following conditions are satisfied for
every a,b,c,deS:

(i) e+ a0 =a-0+¢ =ce,

(i) ab-ted = (a+¢)-(a+d)-(b+cd).

Proof. Necessity of (ii) follows from the distributivity of addition
with regard to multiplication.

In order to prove the sufficiency we need only to show, in view of
a theorem of Birkhoff [1], p. 135, that for every aeS we have

() a?! = a,
(b) eta=ate=e.

Putting b = e and ¢ = d = 0 in (ii) we obtain a- 0% = a*(e+ 0%).
Therefore, for every aed, a = a® Hence (a) is proved.

Setting now @ = b = ¢ and d = 0 in (ii) we get e4¢-0 = (e+¢)(eX
+¢+0). Hence, taking (i) into consideration, we have ¢ = e+ ¢ for every
ceS. If we put b = 0 and ¢ = d = e in (ii), we obtain a-0+¢ = (a+¢) X
X (a+e€)-(a-0+4e), whence, making use of (i) and of the already proved
condition (a), we get e = a-+e. Therefore condition (b) is also proved.
Thus the proof of Theorem 1 is completed.

Note that condition (i) in Theorem 1 does not follow from other
assumptions. A simple example to show this is the set § = {0, a, ¢}
with the following operations:

+ [0 ace 10 a e
0! 0ae 01 0a0
alaaa a |l aaa
el e ae e | 0ae
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THEOREM 2. A semiring with ¢ is a distributive lattice (with unity e)
if and only if the following conditions are satisfied for each aeS:

(i) eta =a+te;

(ii) there exists an inverse element to e+ a;

(iii) there exists an integer n(a) > 1 such that a"” = a.

Proof. The necessity is obvious. To prove the sufficiency, we have,
as in the proof of Theorem 1, only to show (a) and (b).

First let us prove that 2a = a for each aeS. In fact, if " = a for
some n > 1, then

nwl)2 npn—-2 n—-2 n-1

(a =0 an” " =a

Therefore «" ' is idempotent. Hence and from (iii) we infer that
(e+ €)™ is idempotent for some m > 1. But (e+¢)" = (2" —1)e-+ ¢, whence,
by applying (i), we get (e+e)™ = e, because, as it is easy to see, if ¢+ a
is idempotent, then e+ a = ¢ by (ii). Now, if I > 1 is the last integer
such that le = ¢, then

[(1—1)e]2 = (I2—2N)ete = (I—2)e e = (I—1)e.

Hence, (I—1)e = ¢, We infer that | = 2 and that a+a = a(e+e)
= ae = a, whence 2a = a.
Taking this into account we have

(e+a) =etait...+a" ' fa= etat...+a"t = (eta),

because addition of powers of any element a is, by (i), commutative.
Hence, by (ii), e+ a = e, that is, condition (b) is proved.
Now, if £ > 1 is the least integer such that a* = a, then

a1l = ead* ! = (at+e)d" ' = atd"! = ale+a"%) = ae = a.

Hence &k = 2 and in this way we come to (a), which completes the
proof of Theorem 2.

It may be of interest to notice that condition (iii) of Theorem 2 for
rings implies commutativity (see [3], p. 217).

Stowikowski and Zawadowski [4] have defined and investigated the
so-called positive semirings. A semiring with unity and zero is positive
if condition (ii) of Theorem 2 holds for each a and if both operations are
commutative. This leads to a simple

COROLLARY. A positive semiring S is a distributive lattice (with zero
and unity) iof and only if for each aeS there exists an integer n(a) > 1 such
that o™ = a.



198 K. GLAZEK

REFERENCES

[11 G. Birkhofi, Lattice theory, New York 1948.

[2] K. Glazek, Remarks on ideals in semirings (in Polish), Zeszyty Naukowe
PWSP w Opolu, Matematyka 5 (1967) p. 161-176.

[3] N. Jacobson, Structure of rings, Providence R.I. 1956.

[4] W. Slowikowski and W. Zawadowski, A generalization of maximal
ideals method of Stone and Gelfand, Fundamenta Mathematicae 42 (1955), p. 215-232.

[6] H.S. Vandiver, Note on a simple type of algebra in which the cancellation
law of addition does not hold, Bulletin of the American Mathematical Society 40 (1934),
p. 914-920.

[6] — On some simple types of semirings, American Mathematical Monthly
46 (1939), p. 22-26.

[7]1 B. L. van der Waerden, Modern algebra, vol. 2, New Jork 1952.

INSTITUTE OF MATHEMATICS OF THE WROCLAW UNIVERSITY

Re¢uw par la Rédaction le 24. 6. 1967



