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The purpose of this paper is to describe necessary and sufficient
conditions on a closure € so that there is an abstract algebra such that
the natural closure associated with the abstract algebra is precisely C,
where the family of maps in the algebra are required to satisfy some
special conditions. A discussion of this problem when the family of maps
can be arbitrary is given in [1].

In the following let the set § be fixed. If ¢ is a map from 2% to 2°
and n is a positive integer, then C" will denote the n-fold composition

of ¢ with itself; and for P a subset of §, let P be the cardinality of P.

A mapping ¢ from 2% to 2% is a pre-closure if for any P and @ the
following two conditions hold:

Cl1. P < O(P).

C2. Pc@Q =C(P) = C(Q).

A pre-closure ¢ which satisfies

C.3. C*(P) < O(P) for all P contained in 8
is a closure.

A pre-closure (or closure) which satisfies the compactness condition

C.4. For any P = 8§ and for any xeC(P) there is a finite  con-

tained in P such that ze¢C(Q)
will be called algebraic.

The following propositions will give the basic properties of pre-
closures which will be needed. The proofs of (i) and (ii) are trivial and
that of (iii) follows by an easy induction argument.

(i) If C is a pre-closure, then C" is a pre-closure for any positive integer n.

(ii) If O is a pre-closure, then the map () C" which takes a subset P
into | C"(P) is a pre-closure.

(9;121; 1f C is an algebraic pre-closure, then C" is an algebraic pre-closure
forn=1,2,...

(iv) If O is an algebraic pre-closure, then ) O™ is an algebraic closure.
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Proof. Properties C.1 and C.2 for () C" follow by (ii). Let zelJ C"(P).

n>1
Then there is an n such that xeC"(P), and by (iii) there is a finite ¢ con-
tained in P such that x ¢C"(Q). Therefore xe{ ) C"(Q) and C.4 is established

n=1

for () C™.
To show property C.3, let
zel J Cm[U C‘"(P)].
mz=1 n=1

Since C.4 holds for () €™, there is a finite @ contained in (J C"(P)

n==1

such that zelJ C™(Q). The sets C"(P), » =1,2,..., form a nest, and

m=1

since @ is finite, there is a % such that @ < C*(P). Therefore

U o™Q) = U c™(C*(p) = U " (P) = U C"(P).

m=1 m=1 m=1 m=1

Thus xel ) C™(P). Therefore

m>1

U o"[U ¢"(P)] = U 0"(P),

m>=1 n=>1 m=1

and we have C.3.

Let €, and O, be pre-closures. Define C, < C,if for all P, C,(P) < C,(P).
An easy induction leads to

(v) ¢y = Oy = C¥ < CF for k=1,2,...
Hence,

(vi) 0, = €y, = U O} = U 0.

So far we have constructed pre-closﬁres and closures from given

pre-closures. Now to go in the other direction, let ¢ be a closure and N
a positive integer. Then define Uy by

On(P) = U{C(Q):Q = P and @ < N}.

Then

(vii) for € a closure, Oy is an algebraic pre-closure for any positive
integer N.

A closure ' will be called N-ary if N is a positive integer such that
O = | O%(Y). Tt is easily argued that if C is N-ary, then it is also (N + k)-
ary for k a non-negative integer. We also see that an N-ary closure is
necessarily algebraic.

(1) I would like to express my indebtedness to E. Marczewski for suggesting
that N-ary closures (and later N-ary algebras) be included in this paper.
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Next will follow two theorems which give rather satisfying connec-
tions between N-ary closures and algebraic pre-closures.

TueoreM 1. Let C be an N-ary closure and suppose C* is an algebraic
pre-closure such that C* <= C. Then C = |J O™ if and only if

C@Q) = U Cc™(@Q)

n=1
for all Q such that @ < N.

Proof. First we note that C* < O, hence (J C*" < €, since C is
a closure. The proof in one direction is trivial, so we assume C(Q)

— U ¢*(Q) for all @ such that @ < N. Then, for any P
y L,

Cn(P) = U{C(Q):Q = P,Q < N}

= U{0"(@):Q = P,Q <N}
c U c™(P).
n>=1
Thus we have Oy = |J ¢*", and since |J C*" is a closure by (iv),
we can apply (vi) to obtain (J Oy <= (J €*. Since C is N-ary, the con-
clusion follows.

THEOREM 2. Let C be a closure. Then C' is N-ary if and only if there
ewists a pre-closure C* such that

T2.1. ¢ = | O*"; |
T2.2. for any P, 0*(P) = | {C*(Q): Q = P,Q < N}.
Proof. If ¢ is an N-ary closure, then we can simply choose O* to

be Cy. For the converse assume we have a C* such that T2.1 and T2.2
are satisfied. Since ¢ = ) ¢*", then C* < 0. From T2.2, for any P,

C*(P) = U {C*(9):Q cP,Q <N} « U{C(Q):Q = P,Q <N} =0x(P).

Thus C* = Oy, and from (vi) and T2.1 we have € < |J (% Now,
since C is a closure and Cy < C for any positive integer N, we can apply
(vi) to obtain |J O% < O, and the theorem is proved.

If ¢'is an N-ary closure and in addition C(@Q) is countable (possibly

finite) for all @ such that Q < N, then € will be called operational, and N
will be called an index for C. If we restrict our attention to operational
closures, then we can state a result parallel to Theorem 2, but consider-
ably stronger. The next theorem will show that every operational closure
can be expressed in terms of a pre-closure whose properties will be the
key to the final theorem.

THEOREM 3. Let C be a closure. Then C is operational if and only
if there exist a pre-closure C* and positive integers M and L such that
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T3.1. C = | C*;
T3.2. for any P,C*"(P) = J {€*(Q):Q < P Q M}
T3.3. C* (Q < L for all Q such that Q

Proof. Suppose we have a C* such that the three conditions are
satisfied. Then from T3.1, T3.2 and Theorem 2 it follows that € is M-ary.
From T3.2 and T3.3 it follows that C*(P) is finite when P is finite, and
then from T3.1 we see that C(P) is countable when P is finite. Thus C
is operational with index M. ‘

The proof of the converse is a little more involved. Let C be opera-
tional (with index N). If ¢ is any subset of 8 such that Q < N, then we
know that C.(¢) is countable and therefore we can assume that the ele-
ments of C(Q) have been indexed by positive integers. Then we can
write €(Q) = {a¥, a¥, ...} (where the sequence might be finite). Further-
more require that the above sequences satisfy: 1) all menibers of a given

sequence are distinet; 2) the members of  appear first in af, a3, ...

Now for any subset R of 8 such that & < N 11 define C*(R) to be
the set

Ro{a? o {a?,,:Q c R,Q <N, and a2eR}

with the understanding that the expression {a;} is to be deleted from
the above if C(0) is empty.

The following three properties of O* are easy consequences of the
definition of O, where, of course, R has no more than N 11 elements:

C*1. R < C*(R);

c*.2. (**(‘ ) c C(R);

C*.3. C"(R) = U {0*(Q): Q = R}.
Because of C*.3 it is pObbible to extend C* to all of 2% by
"4, C*(P) = ) {C*"(B): B < P, R < N 413,

We will assume O to be so extended, and then note that from the
four properties above it easily follows that CO* actually is an algebraic
pre-closure. Then from C*.2, C*.4 and the fact that C.2 is satisfied by €
we can conclude C*(P) = C(P) for any P, ie., C* < C,

Let ¢ be such that O < N. If CQ) = 0, then necessarily C*(Q)
= ((@)). For this special case it is immediate that

C(@) = U C™(@).

n=1

So now we will assume that € (Q) # @. Then from the restriction 2
on the sequence af and from the definition of C*(Q) we have af<C*(Q).
By a simple induction argument it follows that af e C*"(Q) for n a positive
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integer, and thus C(Q) is contained in | C*(Q). Combining this result

n>=1

with that of the previous paragraph gives C(Q) = | €*"(Q) for all @

n>1

such that ¢ < N, and therefore we have from Theorem 1 that ¢ = (J C*",

Now if we let M = N+1 and L = N+242¥* (N 41), then it is
straightforward to show that the three conditions of Theorem 3 are
satisfied by C*.

Before proceeding we need additional notation and definitions.
A mapping f from a finite Cartesian product of § into § will be called
finitary. If F is a family of finitary maps, then (S8, F) will be called an
algebra (or abstract algebra). An algebra (8, F) is N-ary if every operation
belonging to F is at most N-ary. The mapping C defined by C(P) = the
smallest subset of S containing P and closed under the elements of F is an
algebraic closure (see [1]). The closure so defined is called the closure
induced by (S5 -F). Conversely, given a closure C, then any algebra whose
induced closure is € will be called an algebraic representation of C (or of
the closure space (8, 0)). The following representation theorem is indeed
pleasing (?):

THEOREM 4. A closure is induced by an N-ary algebra iff it is N-ary.

Proof. Suppose C is an N-ary closure. Then fix an ordering in S8
and for each a in S define

a if aeC{{wy,...,on5});
fa(@y, ..., 2y) = { the first element in this order among #,, ..., zy if

adC({@y, ..., on}).

and then define F = {f,: aeS}. (8, F) is clearly an N-ary algebra, and
one readily verifies that € is induced by F. Furthermore, we note
that in the above construction the operations have been chosen sym-
metrical.

Now suppose (8, F') is an N-ary algebra. For each P contained in §
define

O*(P) = U{f(P"): feF, domain (f) = 8"} P.

We can eagily show that O* is an algebraic pre-closure and that
|J C*" is the closure induced by (S, ¥). Then Theorem 2 gives the desired
conclusion.

In the introduction it was mentioned that if we allow I to be infinite,
then the problem of algebraic representation is well known — in fact

(3) Due to E. Marczewski.
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every algebraic closure has an algebraic representation. The following
theorem will cover the case where F is restricted to be finite (%):

THEOREM 5. Let C be an algebraic closure. Then C has an algebraic
representation by some (8, F) with F finite if and only if C is operational.

Proof. Assume O has an algebraic representation by (S, F) with ¥
finite. Let M be the maximum » such that there is an fe F and f maps S"
into 8. Then for all P contained in S define

= (J{f(P"): feF', domain (f) = 8"} w P.

If Q< M, then C*(Q) < (F)(MM)+M. Let the latter expression
be L. As in the proof of Theorem 4 we can claim ¢ = |_J 0*. Properties
T3.2 and T3.3 follow from the definitions of 0*, M and L, so by Theorem 3
we know that C is operational.

For the converse assume that O is operational with index N. Then
let C*, M and L satlsfy the conditions of Theorem 3. For all ¢ such that

Q < M let af, ..., af be some fixed ordering of the elements of C*(Q)
where 1) if necessary some element of C*(@) can appear more than once
so that the sequence has L members, and 2) all the elements of C*(Q)
appear in the sequence. Then, define the finitary functions f; from S
to 8 for 1 < i < L by: fi(#,, ..., #y) = a? where @ is the set of elements
{w), ..., 2y} Again we note that the operations have been chosen sym-
metric.

Now, using property T3.2 it follows rather readily from the defini-
tion of the f; that

= U{fi(P"):1 <4 < L},

and then because of property T3.1 we can verify that C is induced by
(S, F), where of course F = {f;:1 <4 < L}, and therefore ¢ has an
algebraic representation with F finite.

Remark. From the proof of Theorem 5 we see that an operational
closure with index N has a representation by an algebra (S, F), where F
has at most N +2+ 2+ (N 4+1) maps, and each of the maps are (N +41)-
ary.

The following example will show that Theorem 5 provides a simple
necessary and sufficient condition for an important class of closures to
have an algebraic representation by an algebra (S8, F) with F finite.
Let S be a lattice, and for P a subset of S, let C(P) be the filter generated
by P (i.e. the least filter containing P). Then C has an algebraic represen-
tation by an algebra with a finite number of maps iff for each 28, C({z})

(3) T would like to thank Allen S. Davis for suggesting this problem in [2].
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is countable. To show this we need only note that ¢ = ) C}, and for
@,ye8 it is true that Oy({x,y}) is equal to COyf{inf(z,y)}). From the
remark following Theorem 5 we see that if we have such a representation,
then F need consist of at most 27 ternary maps.
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