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Introduction. What can be said about the distribution of binomial co-
efficients modulo m? By the Chinese Remainder Theorem it usually suffices
to consider m = p*® where p is a prime. Most work so far has been for s = 1
and small values of p, in particular the case m = 2 has been extensively
studied [1], [5}-[10]. When the binomial coefficients are arranged into Pas-
cal’s triangle we find that the number of odd entries in row r is 2™ where
ny is the number of ones in the base 2 expansion of r. Thus, the number of
elements which are congruent to 1 modulo 2 depends only on the number
of ones in the base 2 expansion of r, not on where they occur nor on the
number of zeros.

Let N(r,m,a) denote the number of elements of the rth row of Pascal’s
triangle which are congruent to a modulo m, where 0 < a < m. The problem
of determining the total number of such elements in rows zero through r is
essentially equivalent, although not as convenient for our purposes. Also,
the latter problem is sometimes considered only for special values of r such
as r = m" [11).

Explicit formulas for N(r,m,a) become increasingly complicated as m
grows larger. Formulas for the primes m = 3 and 5 are given in [7] and for
the prime power m = 4 in [3]. An expression for N(r,p,a) is also obtained
in [7]. Also, the following interesting result is mentioned. It is an extension
of the fact that N(r,2,1) depends on only the number of ones in the base 2
expansion of r.

THEOREM 1. If p is a prime and 1 < a < p, then N(r,p,a) depends
only on the number of occurrences of each nonzero digit d in the base p
ezpansion of r and not on where they occur nor on the number of zeros in
the ezpansion.

For example, N(r,3,1) = 2"~1(3"2 + 1) and N(r,3,2) = 2m~1(3"2 — 1)
where n; is the number of digits ¢ in the base 3 expansion of r.

The number N(r,p,0) does not satisfy such a nice relation. Of course if
N(r,p,a) is known for each a # 0, then N(r,p,0) is easily obtained. The
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general question of what power of p divides (’t') is quite old. It is well known
for example that p“||('t') where a is the number of borrows needed when the
subtraction r — t is done in base p [10]. Recently, the total number of such
binomial coefficients has been studied in [11].

In the next section, we give a simple proof of Theorem 1 using Lucas’
Theorem and generalize it to N(r,p?,a). In the final section, we derive
another formula for N(r,p,a) for an arbitrary prime p.

Lucas’ Theorem and N(r,p%a). One of the most beautiful results
concerning binomial coefficients is Lucas’ Theorem [4], [5]. For any positive
integer rlet 7 = repF + 1 1p* Y+ ...+ 10 = TRTR1...T0 , Tk > 0, be the
base p representation of r. Similarly for t < r, t = t)tx_1...%9, where we
now allow t; = 0 if necessary. With the usual interpretation that (’t"') =0
if t; > r;, we have

Lucas’ THEOREM. If p is a prime then

() =00 () moan

Thus, pt (}) if and only if 0 < t; < r;, for i = 0,1,...,k. Furthermore,
the number of binomial coefficients (;) which are congruent to a given value a
modulo p is the number of ways the ¢; can be chosen so that

(i) Get) () = tmot

which in turn depends only on the number of r; in each nonzero residue
class modulo p and not on where they occur. This establishes Theorem 1.

The primary goal in this section is to extend Theorem 1 to residues
modulo p?. A generalized form of Lucas’ Theorem appearing in [2] will be
used. Although the generalized version applies to any power of a prime p,
we need only the following form.

THEOREM 2. If p is a prime then
(- GG GG () )
t tktk—1/ \tk-1tk—2 tito) \tk—1 le—2 4
where

T . T:T;_ .
( ') =p if t; >y (' ' 1) =p ifri=t; and ti; > ri_y,
t; - tit;i—1

TiTi-1 Ti—1 ]
— t ..
(titi-l) P (ti-l) fti>r
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Thus, for example, if we write numbers in base p = 5:
)= (DG @EE) (6
1421 / — \(1/\14/\42/\21/ \1 4 2
13\ (33 5 4\ (42 3) '15_1 A\ !
1/\14)"\2/\21/ \1 2
13\ /33\ [42)\ /3\ "' _ _
( 1) (14) (21) (1) =13-40-12-32 = 30 (mod 100).

(In base 10 this means (. ) = 15(mod 25).)
The case p = 2 was solved in (3], where explicit formulas for N(r,4,a)
are obtained.

2™m if ny = 0,
N(r,4,1)=

om-l if nyp >0,
N(r,4,2) = nyo2™ 1,

0 - if ny = 0,
N(r,4,3)=

gn1-1 if ny; >0,

where ng = number of blocks B in the base 2 representation of .

These results suggest that in general N(r,p?,a) should depend on only
the number of occurrences of each nonzero digit or pair of digits in the base p
expansion of r. However, this is not the case. We will prove the following
extension of Theorem 1.

THEOREM 3. If p is a prime and pta then N(r,p?,a) depends only
on the number of occurrences of each block of nonzero digits in the base p
ezpansion of r and not on where they occur nor on the number of zeros in
the ezpansion.

EXAMPLE. Let p = 3, = 1210222, 7r, = 2220121 and r3 = 12100222.
We have N(r;,9,1) = 40, N(4,9,2) = 92, N(r;,9,4) = 36, N(r;,9,5) = 36,
N(r;,9,7) =88 and N(r;,9,8) =32, fori=1,2,3.

Note that in the example above the two digit blocks 10 and 02 appear
in r; but the reversed blocks 01 and 20 appear in r;. Nonetheless, each
residue a not divisible by 3 occurs equally often.

Proof of Theorem 3. Note first that (§) = (¢)(mod p?) for any
nonnegative integers @ and b written in base p. If we expand

(i0) = () = ™G
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and collect all the terms divisible by p and simplify, we obtain (”';)
where @ is a product of factors each of the form

(r1+ 8p)(r2 + 8p) ... (Tp—1+ sp)/T1T2.. . Tp1

where the r; form a reduced residue system modulo p and s is some positive
integer. It suffices to show that each such factor is congruent to 1 modulo p?.
The numerator of each factor is

(e

T1T2...Tp—1 + 8pE71 + pPPEy =mry...1p1 +5p21 (mod p?)

where X is the elementary symmetric function of r1,...,7p,—1 taken p — 2
at a time, and Y is a sum of integers whose form is immaterial.

The polynomial f(z) = (z —r1)...(z — rp—1) — (2P~ — 1) has degree
at most p — 2 and rq,...,7p—1 are all roots, so f(z) must be identically
zero modulo p. This implies that all elementary symmetric functions of
T1,...,Tp—1 €Xxcept 71 ...T,_1 must be divisible by p. This shows that each
factor in @ is indeed congruent to 1 modulo p.

Now suppose r; when written in the base p has the form B,0B,0...0B;
where each B; is a block of nonzero digits and each 0 is a block of zeros of
unspecified length. If ("‘) # 0(mod p) then t; = T10730...0T; where the
blocks have the same length as the corresponding blocks in 7; but the T;
may contain some zeros.

If r2 has the same blocks B; as r; then r; can be written r, =B, 0B,,0. ..

..0B,, where the B,, are a permutation of the blocks B;. (The blocks 0
may have different lengths.) If ¢t; = T,,07,,0...0T,,, we have a one-to-one
correspondence between the elements of rows 7, and r; in Pascal’s triangle
which are not divisible by p. It remains to show that ("1) = ("2) (mod p?).

If we apply Theorem 2 to (’:) and (] ) then the factors are identical
except possibly for

G G @) G
0t,, ) \is, T\, 0/ \1t;, To\0t )\ ©o\810/ \t;
where b; and b} denote the first and last digit of block B; respectively, and

similarly for T;. However, each such product is congruent to 1 modulo p?
by our earlier remarks, which completes the proof.

As expected, the residues divisible by p do not satisfy this theorem.

EXAMPLE. Let p = 3, r; = 1210222, r, = 2220121 as before. We have
N(7,9,3) = 220, N(r2,9,3) = 264; N(r1,9,6) = 212, N(r,9,6) = 276.

In the follbwing example the two numbers r; and r, have exactly the
same pairs of digits (and single digits), but longer blocks are different.

EXAMPLE. p = 3, r; =12102202, and 7, = 12021022. We have N(r,9,1)
= 44 but N(r3,9,1).= 68.
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A formula for N(r,p,a). We can also use Lucas’ Theorem to find a
formula for N(r,p,a) where a # 0. If r = rx...7¢ in base p, let n; be the
number of the r; which equal j for j =0,1,...,p— 1. By Lucas’ Theorem

, p-1 j 8j;
()=IILE)" ot
=1 i=0
where s;; = number of ¢, = ¢ corresponding to values where r, = j. Let

8 = {sji} denote a fixed set of these values. Thus, the number of ways to
arrange such values of ¢}, is

p—1 1
n;.
I I I I it A A,.
. . S','!
J=1 =0 J

Also, for a given set of values s let

-1 j Sji
B.=[[ II (z) :
j=1 i=0
If ¢ = exp(27i/p) then (1/p) 21 eh(Bs=9) is the characteristic function

for the values of B, which are congruent to a given residue a. If we now
sum over the possible sets of values s we obtain

p—-1
N(r,p,a) = % E cee Z Z giBs=a) 4

sjo+811=n 8p—1,0t...+3p—1,p—1=np-1 h=0

Such formulas also imply Theorem 1, but are not the easiest way to
approach this result. In such general form they are not very effective in
actually calculating N(r,p,a). However, for small values of p we may obtain
more effective formulas.

If we use Lucas’ Theorem when p = 3, all factors except those of the
form (f) are congruent to 1. The value of (:) thus depends on whether there
are an even or an odd number of such factors. Thus,

[r2/2] ns
N(r,3,1)=2™ Z (2.7

)2113-21' — 2n1-1(3n9 + 1)’
=0

N(r,3,2)=2™ )

[(n2-1)/2] (
j=0

n2 n2—2j-1 _ 9ni—1rqny _
2j+1)2 e,
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