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Introduction. As is well known, an Abelian group can be linearly
ordered if and only if it is torsion-free. The main point of this note (1)
is to give criteria for determining what types of order a given Abelian
group admits. It turns out that the types of order depend essentially on
the least upper bound of the number of generators of those free Abelian
groups that are pure subgroups.

Notation and definitions on order types will be taken from [6];
definitions relevant to ordered groups can be found in [3]. Let ¢ be an
ordinal. We denote by (o*-+14 )5 the order type of the relation R
whose field is the set of all g-termed sequences of integers that are al-
most always 0; for any two such sequences a and b, aRb if and only if a
precedes b in antilexicographic order. Note that (o*+1+ ) = (0" + 0)”
for finite ordinals ¢. For any set A, x(A) denotes the cardinality of A.
Moreover, let u be an order type, let R be any relation with 7(R) = u;
it is convenient to use the symbol »(u) to denote the cardinality of F(R).
In particular, for every ordinal 6, »(0) is thus defined. The symbol -+
will be used in three senses: ordinal addition, cardinal addition, and
the group operation. The symbol - will be used for ordinal multiplication
and for cardinal multiplication. It is believed that context will always
allow us to distinguish. All groups considered are Abelian; hence the
word Abelian will be omitted. By a proper subgroup of & = (G, +) we
mean a subgroup $ = (H, +) where @ ¢ H < G. An ordered group 1is
an ordered triple O® = (G, 4, <), where

(i) (G, +) is a group,

(ii) < is a linear ordering relation with ¢ = F(R),

(iii) for all a, b, ceG,a < b implies a+te¢ < b+te.

If (H, 4) is a subgroup of (G, +) and if DG = (G
ordered group, then 0% = (H, +, <p), where <y =

, +, <) 18 an
< (H)», 1s an

(*) Written with support from N.S.F. Grant GP-5691. The author is indeb-
ted to R.S. Pierce for several helpful suggestions.
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ordered subgroup of OG. If O® = (¢, +, <) is an ordered group, and
if 7(<{G)) = a, we shall say that & = (¢, +) admits an ordering of
type a. If OH = (H, +, <) is an ordered subgroup of OG = (¢, +, <)
and if whenever a <@ < b and a, beH, then xeH, then D9 is a convex
ordered subgroup. Note that if Of is a convex ordered subgroup of O,
then 9 1s a pure subgroup of ®. For every cardinal «, §, denotes the
free group with « generators. It is convenient to assume that §, is a one-
clement group; hence ¥, admits the order type 1. A group not isomorphie
to &, will be called non-trivial. Isomorphism and identity will be freely
confused. The additive group of rational numbers, with the usual order-
ing, will be written as OR = (R, 4, <), with y3 for 7(<). For any group
® = (¢, +), we write #(®) for »(G); hence if § is a subgroup of ®, the
(-mdlnahty of the quotient group is »(®/$). The symbol »(®) will be
used for the rank of the group ®. -

LeMmA 1. Let O = (G, +, <) be an ordered group with v(<) = .
If a is a scattered type, then '

= (0" 414+ w)?

for a unique ordinal ¢.

Proof. See [7], p. 214, Corollary 1, and p. 213, Theorem.

The simple lemma below will be used several times.

LeMmA 2. Let DG = (G, +, <) be an ordered group, let a,b, ceG.
Then < {Ja,b]> =~ < {Ja+c¢,b+c]).

THEOREM 3. Let DG = (G, 4+, <) be an ordered group, let a = v(<).
Then a satisfies evactly one of the following conditions:

(1) @ = (0" +14 )} for a unique ordinal .

(i) a = (0" +1+w)f 6 for a unique non-zero ordinal ¢ and some
dense order type o. '

(1) a 28 a dense type (?).

Proof. If ais scattered, then a satisfies (i) by Lemma 1. Now assume
that « is not scattered. First, consider the following case:

(1)  For every ae@G such that 0 <<a there exists a ¢e@ such that 0 < ¢ < a.

(3) The theorem was obtained for denumerable (not necessarily Abelian)
ordered groups by Mal'cev (see [5] and [4]); it is evident that Theorem 3 applies
to non-Abelian groups also. A closely related result is [12], p. 18, Theorem 4.

A classification of the dense types occurring in (i) (or, equivalently, in (iii))
appears to be a difficult problem; the problem seems to us to be too specialized to
be worthwhile.

A coarser classification of types of order is between discrele and dense, the
discrete types being those of (i) and (ii). The latter classification appears to be appro-
priate for the study of the first-order theory of ordered groups (see [2}) while ours
i1s suitable for the investigation of the algebraic properties.
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It is apparent that < is a dense relation, for assume that d, eeG
and d < e; then 0 < ¢ < d; hence there is an f such that 0 < f < e—d,
and so d < f+d < e.

Now, suppose that (1) does not hold. Then there exists a “smallest”
element e such that 0 <e. By [6], p. 53, Corollary 3.3,

(2) &= Z S;, where R is a dense relation and each 8, is a scattered
subreiﬁion of <.

Let 8, be the unique S; for which 0e#(8;); let H = F(8S,). Clearly
(3) ceH. ‘

If a,beH, then, using (2), we see that
(1) < a,b]> is a scattered relation.

By Lemma 2,

<@, b)) = < 0,b—a]);

hence, by (2) again, b—aeH. Employing (3), one now obtains the con-
clusion that ©$ = (H, |, <y)is aninfinite convex subgroup of (¢, +, <).
With the help of (2), we conclude that the interval 8, is scattered. Now
by Lemma 1, |

7(8,) = (0 +1+w)} for some ¢ > 0.
L2

Now suppose N; # 8,. Pick an element aeF(8S;). It is easy to see
that the function

f(x) =2+a for all zeF(S,)

maps the relation 8, isomorphically onto 8;; for, if this were not the
case, a scattered relation would be isomorphic to a non-scattered rela-
tion. Now with the help of (2) one obtains that

7<) = (0" +14+w)l-6 with 6 = z(R).

The cases (i), (ii), and (iii) are clearly mutually exclusive.

From the proof of Thecorem 3, we obtain

COROLLARY 4, Let 06 = (G, +, <), where 1(<) = (0*+1+ w)§- 4,
and & s a dense type. Then O® has a conver ordered subgroup, 09
= (H, +, <) with 1(<y) = (0*+1+ w)h; moreover, ®|9 admits the or-
dering o.

LeMMA 5. Lt O = (G, +, <) be an ordered group with t(<)
= (0" +14+w)l. For each ordinal 0 < ¢ there exists a convexr subgroup

VHe = (Hyy +, <mp)
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such that

(1) (< <Hp)) = (0 +1+w)s,

(ii) 6/9Hy admits an ordering of type (o +1-4 w)2°, where y, is the
untque ordinal satisfying the equation 0+ y, = @.

Proof. By hypothesis, the elements of ¢ can be labelled as

{ala is on ¢ to the integers and a, = 0 for almost all « < ¢}.

Then a < b if and only if a precedes b in antilexicographic ordering.

Since (see [7], p. 214, Corollary 2) the relation < is one-point ho-
mogeneous, we can designate the zero element of ¢ as that sequence a
for which a, = 0 for all . < ¢.

We need the following statement:

(1) Suppose b,b'eG and b < b’. Let
p be the largest ordinal for which b, + b,. Then the order type of
< (b, b)) is
D (@ 1+ @) o)+ (0 +1+ o) (B, — b) —1) +( Y ((0* +1+ w)- 0))".
e <p

. For brevity, we write the type above as (x; n), where n = (b, —b,)—1.
The proof of (1) will not be given here; it easily follows from [12],
p. 16, Theorem 4. We also make use of the following fact:
(2) If (u;n) = (u'5n'), then g = p' and n = »n'.

The proof of (2) will also be omitted; it is not too short, and the
technique is not relevant to the material of this note.
Now let

(3) Hy = {a]aeG and a, = 0 for all  with 0 < < ¢}.
Obviously
(< CHp)) = (0" +1+ o).

Now let b, ceH,; for definiteness, assume that 0 < b.
Let d = b+¢; we want to show that

(4) d =0 for all . = 0.

Suppose that (4) is false; suppose p = 0 is the largest ordinal ¢ for
which d, # 0. Now, by using Lemma 2,

< b, b4¢)> = < (0, ¢)>.
Hence

(< (b, b+0)>) = (u; m) for some m;
r(< <00, 0)>) = (p; n) for some p << 0 and for some n.
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Using (5) and (2) one obtains a contradiction. Thus (4) holds.
Now suppose beH,; assume 0 < b. From Lemma 2,

< =5, 0)) = < (0, b)>;

with the help of (1), (2), and (3), we see that —beH,. Hence we

get (1).

To prove (ii), note that, for any a, beG, a = b (mod $,) if and only
if @, = b, for all . > 0. Moreover, it is easy to see that a/$, is an interval
of <. Now for every coset a/$, put

falDo) = {(¢, @9, ) [0 < ¢ < g0}
and put

alDHe <" b/He if and only if a/DHy = b/Hy or f(a/$H,) precedes f(b/$H,) in
antilexicographic ordering.
It is casy to check that /9, admits ordering 7(<') and that (ii)
holds.

LEMMA 6. Let & be any group. Then the following conditions are
equivalent

(i) 6 =~ ;.
(ii) The only type of ordering that & admits is o+ w.
(iii) ® admits an ordering of type ©*+ w.
Proof. All the implications are obvious cxcept for the statement
that (i) implies (ii). Assume that &, admits the following ordering:

(1) Dgl = (Fla —I_? Q),

where 7(<) = (0" 4 w)-p for some f + 1.

From Corollary 4 and Lemma b, it follows that O, has a proper
convex subgroup, hence a proper pure subgroup; but &, has no proper
pure subgroup.

Now assume that

(2) OF, = (F, +, <), where 7(<)=7.

Assume that &, is the set of integers and that 0 < 1 in the ordering <.
By (2), there must exist an aeg, such that

0<<a<1.

However, §, is generated by 1, thus no positive element of §F, can
be less than 1. Hence (2) is also impossible, and we conclude (ii).
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LEMMA 7. Let & be a group, let a be a cardinal. Then the following
conditions are equivalent:

(i) 6 =~ F.-
(ii) ® admits all orderings of type (0* + 14 )i, where x(¢) = a (®).

Proof. Suppose (i) holds and x(¢) = «. Then we can label a set
of free generators of G as

{a,]0 < ¢ < ¢}.

Now using a natural antilexicographic ordering of the elements of @,
we obtain (ii).

In order to prove that (ii) implies (i), we note that a weaker statement
is proved in [11], namely

(1) If G admits an ordering of type (o 11} o) for some ¢, then
® ~ §, for some a.

We note that
(2)  If 0 < x(p) <N, then x((0+1+ o)) = N,
and also
(3)  If 8 < x(p), then x((w*+1+ 0)f) = =(g).

If 8, < #(p), then (i) follows from (3) and (1). In order to obtain (i)
when x(¢) < 8, it is sufficient to prove two statements:

(4) If  admits an ordering of type (o + )", where 1 < » < o, then
® ~ Fn.

(5) If ® admits an ordering of type (o*-+1+ w)j, where x(¢) = 8,
then (ﬁ 0o 830.

Now (4) holds for » = 1 by Lemma 6, (i), (iii). Assume that (4) holds
for n and that ¢ admits the ordering (0* 4 w)" "', Hence we have

06 = (¢, +, <), where (<) = (o + )"

By Lemma 5 there exists a convex, and hence pure, subgroup 09
for which

09 = (H, +,<p) and 1(<p) = (0" + )",
and for which

(6) /9 admits the ordering o* -+ .

(®) If one omits the tacit assumption that @ is Abelian, the theorem becomes
false, i.e., for every cardinal a > 2, there exists a non-Abelian group admitting the

orderings (w™+1-+ )y, where x(p) = a; see [8].
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By the inductive hypothesis, $ ~ &,; thus

r(9H) = n.
Using (6) and Lemma 6 (i) and (iil), one gets
r(G/9) = 1.

Now using the familiar identity,
(7)) r(®) =r®H)+r(®G/H), when § is a pure subgroup of ®,
we see that
(8) ' r(®) =n+1.

By (8) and (1), we have G ~ ¥,,,, and so (4) holds.
Now suppose that ® satisfies the hypothesis of (5). By (1) and (2),
either

(5%8'&,,

or
(9) ® ~ §, for some finite n.

Suppose (9) holds. Using (4) and Lemma 5, we find that & has
a pure subgroup $ with
H = gn+17
in contradiction to (9). Thus (5) holds.

LeMMA 8. Let ® = (G, +) be a torsion-free group and let $ be a pure
subgroup of ®. If & adwmits the ordering f and if &/ admits fh(’ ordering vy,
then & admits the ordering f-y.

Proof. By hypothesis

H = ( , +, <), where (<) =8,
G/H = (K, +, <), where 1(<,) = .

Now define a relation < with F(<) = @ as follows: a < b if a/H
<, b/H or if a/H =b/H and 0 <, b—a ‘

It is evident that O = (G, +, <) is an ordered group with 7(<)
=

THEOREM 9. Let & be a non-trivial torsion-free group. The following
conditions are equivalent:

i) & # §..

(il) ® admits a dense ordering (*).

(*) There exist non-Abelian ordered groups that do not admit a dense order-
ing; see [8].
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Proof. By (i) and (ii) of Lemma 6, we obtain that implication (ii)
implies (1). Now suppose ® non ~ &,. It is easily seen that & has a
pure (not necessarily proper) subgroup $ with

(1) R < %(H) <2% and H non ~ F,.

By [1], p. 226, Ex. 2(b), every torsion-free Abelian group of cardi-
nality not greater than that of the continuum admits an Archimedean
order. By [11], p. 24, Theorem 1, if O = (H, +, <), where (<) is
a discrete type (see footnote (2)), and < is an Archimedean ordering,
then § ~ §,, in contradiction to (1). Now using Theorem 3, we find that $
admits a dense ordering, say 4. Since § is a pure subgroup of ®, it follows
that /9 must be torsion-free. From the familiar fact that every tor-
sion-free group can be ordered (see, for example, [3], p. 36, Corollary 5),
one obtains an ordering of some type £ for /9. From Lemma 8, &
admits an order of type 4-p. Since 6 is the type of a dense relation without
first or last element, it is clear that 6-f must be dense also.

THEOREM 10. ¥, admits precisely the following types of order:

(i) All types (o +1+ @)y, where »(p) = a.
(ii) If ais finite, all types of the form (o™ + w)™ n, where 1 < m < a—2.
(iii) If a is infinite, for each ordinal ¢ with

1 < #(p) < a,
and for each infinite cardinal o satisfying

max(x('qo), g) = @,
a type of the form
(0+1+ w)§- o,
where 0 s dense and »x(0) = o.
(iv) Dense (for a = 2).
Proof. By Lemma 7, &, admits the orderings of (i).
Now suppose that a is finite and 1 < m < a—2. Let § be a pure

subgroup of §,, with § ~ ..
Referring to the familiar formula

(1) r(®) =r(H)+r(®/H) for every pure subgroup 9,
we see that »(®/9H) = 2, and hence
®/$H non ~ F,.

Using Theorem 9 and Lemma 8 we obtain the orderings of (ii).
Now let a, ¢ and ¢ satisfy the premises of (iii). Let

{a]v < =(g)+ o}
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be a set of free generators of §,. Let § be the (pure) subgroup generated by

{a, | v < x(g)}.
Then § ~ §,,); by Lemma 7, § admits order (o™ 41+ o). Clearly,

ol = 3@'

Since p is infinite, using Theorem 9 one obtains that &,/$ admits
a dense ordering of type 6, where x»(d) = p. Now using Lemma 8 one
obtains the orderings of (iii). Obviously, (iv) follows from Theorem 9.

It remains to be proved that the types of order listed are the only
possibilities. That there are no other scattered orderings follows from
Lemma 7 and from (2) and (3) of the proof of Lemma 7. Suppose that «
is finite and that F, admits an ordering of type.

(w*+14+ o)y, where 1 <a—1 <0,

Clearly, 6 cannot be greater than a—1, for otherwise, by Corollary 4
and Lemma 5, ¥, would have a pure proper subgroup isomorphic to &,
where 0 > a. If one puts 6 = a—1, then one easily obtains a contradic-
tion with the help of Corollary 4, Theorem 9, the fact that &,/ is free
Abelian for every pure subgroup $, and (1). If a is infinite, then an obvious
cardinality argument, using (2) and (3) of the proof of Theorem 7, pre-
cludes any other discrete types. Reference to Theorem 3 completes the
proof.

THEOREM 11. Suppose that

(a) ® is torsion-free but & is not free;

(b) a is the smallest cardinal with the property that ® has no pure
free subgroup isomorphic to F.;

(¢) o is the smallest cardinal such that, for some pure free subgroup K
of ©, x(6G/]) = e.

Then ® admits the following types of order:

(i) dense;

(i) if a is finite, alltypes of the form (w* -+ w)" 8, where n < a, & is
dense and »(8) = »(®);

(iii) of a is infinite, all types of the form (o +14 w)%-06, where

(1) 0 < x(p) < a,
(II) 6 is dense and o < x(9),
(I1T1) ma,X(x(qo), #(8)) = »(®).

Proof. Obviously, & admits a dense ordering. To show that ®

admits the orderings of (ii) and (iii), we need the following fact:

(1) If K is a pure free subgroup of ®, then /K is not free.
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If (1) were false, it would follow from [2], p. 38, Theorem 9.2, that (&
is a free group, in contradiction to (a).

If a is finite, then, using (1), Theorem 9, and Lemma 8, we see that 6
admits the orderings of type (ii).

Suppose that « is infinite; in this case we make the convention that

@ is an ordinal and ¢ < a.
First, consider the subcase
(2) #(p) <=(®) or o ==x(0).
By hypothesis, there exists a pure subgroup K of ¢ with
(3) K >~ Fog)s
hence, using (2), we get
(4) 2(®/R) = %(O®).

By (3), Lemma 7, Theorem 9, Lemma 8, and (4), it follows that ®
admits an ordering of type

(D) (0 +1-+Lw)5-6, where x(0) = x(®).
Now consider the subcase
(6) x(p) = x(®) and o < %(®).
By hypothesis, there exists a pure free subgroup & of & such that

(7) x((ﬁ/ﬁ) = 0,
and hence

R e %u(m-

Let u# be any cardinal satisfying the inequality
(8) 0 < p < x=(0).

Since, by (6) and (8), ¢ + © = @, we can label a set of free generators
of & as

fal e < g+ u}.
Let € be the subgroup of & generated by L = {a, | « < ¢}. Obviously,
(9) € is a pure subgroup of ®;

moreover,

(10) Qo Fyy and  x(K]/8) = p.
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Since
x(®/L) = %(B/K) - % (K/Q),
using (7), (8), and (10), we get
(11) %(G/L) = p.

Using (9), (10), (11), Lemma 7, Theorem 9, and Lemma 8, we find
that ® admits an ordering of type

(12) (0" +1+4 )-8, where & is dense and »(d) = p.

By (5) and (12), all the types of (iii) have been obtained. Finally,
a familiar argument using Corollary 4, Lemma 7, Lemma 5, (2) and (3)
of Lemma 7, and Theorem 3 yields that all admissable types have been
enumerated in (i), (ii), and (iii).
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