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It is well-known that every compact Hausdorff topology 7 on a set X
is minimal in the sense that there is no Hausdorff topology on X prop-
erly contained in Z. Bourbaki [6] has characterized all spaces with
this property and shown them to be absolutely closed; see [1]. He also
exhibits a space of Urysohn which is minimal Hausdortf, but is not com-
pact. A description of this space can be found in [4]. Banaschewski [3]
has obtained analogous results for minimal regular spaces and Berri
and Sorgenfrey [5] have exhibited a minimal regular space which is
not compact. More recently Herrlich [7] has arrived at similar results
for Urysohn spaces. The existence and characterization of these spaces
were also known to C. T. Scarborough. Banaschewski [3] has investigated
minimal locally compact and minimal completely” regular spaces and
shown them to be compact. In [4], Berri proves that every minimal
normal space is compact.

We will investigate minimal 1-spaces where A = paracompact, metric,
completely normal and completely Hausdorff, and show all these spaces
to be compact. Only Hausdorff spaces will be considered.

The terminology will coincide with that of [3], [5] and [6]. The
word “space” will mean topological space. If A is a subset of the space X,
we denote the closure by A’

1. Paracompact spaces. A paracompact space is a regular space in
which every open cover has an open locally finite refinement. It is well-
known [8] that in regular spaces this condition is equivalent to: every
open cover has an open o-locally finite refinement. We say that a para-
compact space (X, 7) is minimal paracompact if there is no paracompact
topology defined on X which is properly contained in 7.

THEOREM 1. A minimal paracompact space (X,.T) 18 compact.

It is well-known [2] that a pseudo-compact paracompact space is
compact, so it suffices to show that every countable regular filter base
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{F,} has an adherent point. Suppose that {F,} has void adherence. For
each weX, let A4 (x) denote the open neighborhood system of x. Choose
peX, and define a new fundamental system of neighborhoods on X
as follows:

.//[(.’I:):./V(a?), xFp,
M = (B o N5 =18 50 Vel P}y @ =9.

Then 7', the topology indunced on X by {#(x): xeX}, is a regular
Hausdorff topology which is strictly weaker than 7.

We will show that 7' is a paracompact topology. Let % be an open
cover of (X,7'). Since (X,7) is paracompact, there exists an open
locally finite refinement 7~ of %. There exist N, 4" (p) and F,, such that
N, v F, is contained in some member Ue%. By regularity of 7, there
exists an N,eH (p) such that Ny = N,. Let # 7 = {V—(Fr v Ny)': Ve¥ '}
It follows that # = U{#:k =1,2,...} v {N, v F,} is an open o-lo
cally finite refinement of % with respect to Z’. Thus .7’ is paracompact,
which contradiets the minimality of 7.

2. Metric spaces. A space (X,.7) is said to be metrizable if there
exists a metric defined on X compatible with 7. We say that a space
(X, .9) is minimal metric if 7 is metrizable and there is no metric topology
defined on X which is properly contained in .7. If (X,Z) is metrizable
and is closed in every metric space in which it is homeomorphically em-
bedded, we say that (X,.7) is metric closed.

THEOREM 2. A minimal metric space (X, 7) is compact.

Since every metric space is paracompact, we may suppose as in
Theorem 1 that there exists a countable regular filter base {¥,} on (X, .7)
having void adherence. Let d be a metric on X compatible with 7, and

N(x,1/n) = {yeX:d(w,y) < 1/n} for each weX.

Choose pe X, and define a new fundamental system of neighborhoods
on X as follows:

M) ={N@,1n:n=1;2, .-}, 3£,
M(p) = {Fy v N(@,1/n):n=1,2,...}, @=0.

Then ', the topology induced on X by {#(x): xeX}, is a regular
Hausdorff topology strictly weaker than 7.

We will show that 7' is metrizable. By [9] and [10], it suffices to
show that 7' has a o-locally finite base. Since J is metrizable, it has
a o-locally finite base # = {#;:j =1, 2,...}. Let

Wi = |B—(Fo v N(p,1/n): BeBy) w (Fn o N(p,1/n)}
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and
W = U{Wm't’ﬂ,j = 1,2, }.

Then %" is an open o-locally finite family with respect to 7.

It remains to show %" is a base for 7. Let e UeJ". If & = p, there
exists an F, o N(p,1/n) ¢ U. If & # p, then zeU—(F, v N(p, 1/n))
for some . Since # is a base for .7, there exists a Be%; for some j such
that xeB < U. Then

geB—(F, v N(p,1/n)) = U
and
B—(F, v N(p, 1/n)) e# ;.

Thus #” is a base for 7. 1t follows that 7 is a metric topology, which
contradiets the minimality of 7.

THEOREM 3. Kvery metric closed space (X,T) is compact.

Let p be a point not in X, and let ¥ = X o {p}. Suppose there exists
a countable regular filter {F,} on (X,7) having void adherence. Using
the notation of Theorem 2, we define a fundamental system of neigh-
borhoods on Y as follows:

M) =N (z), @Fp,
M(x) = [F o {p}y:n=1,2,...}, &=np.

Then {#(z): 2 Y} induces a regular Hausdorff topology 7’ on Y.
By interchanging the symbol ¥, w {p} with F,, o N(p, 1/n) of Theorem 2,
it is easy to see that (Y,Z’) is metrizable. Thus (X,.7) is embedded
as a non-closed subspace of the metrizable space (Y,.7’). This is a con-
tradiction.

3. Completely normal spaces. A space (X,7) is completely normal
if for every pair of separated sets 4 and B contained in X, there exist
open sets U, Ve7 such that A c U,B<c Vand U~V =@. A com-
pletely normal space (X,.7) is said to be minimal completely normal
if there is no completely normal topology defined on X which is properly
contained in 7. If (X,.7) is completely normal and is closed in every
completely normal space in which it is embedded, we say that (X + T )
is completely normal closed.

TrworeM 4. A minimal completely normal space (X,T) is compact.

Since (X,.7) is completely regular, it suffices to show that every
regular filter base on (X', 7) has non-void adherence; see [5]. Suppose F
is a regular filter base on (X, 7) with void adherence. Choose peX and
carry out the same procedure as in Theorem 1 to obtain a regular Haus-
dorff topology 7' on X strictly weaker than 7.
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We will show that 7 is completely normal. Let A and B be two
separated sets in (X, ’). Then A and B are separated in (X, .7), so there
exist sets U and V both members of 7 such that 4 < U, B < V, and
U~V =0. 1f p¢A o B, then U—{p} and V—{p} are both members
of 77 and (U—{p}) ~ (V—{p}) = . Suppose ped o B, say peA. Then
by regularity of .7, there exist sets S, T in J' such that peS, B < T
and S ~ T =0. It follows that A =« S v Ue7’y, BT ~ Ve7', and
S Uyn(T'~V)=0. Thus (X,7’') is completely normal. This is
a contradiction.

THEOREM 5. A completely normal closed space (X,.7) s compact.

As in the previous theorem, we suppose # is a regular filter base
with void adherence. Let » be a point not in X and let ¥ = X u {p}.
Using the method of Theorem 3, we define a completely normal topology
Z"on Y. Thus (X, .7)is embedded as a non-cloged subset of the completely
normal space (Y,Z'). This is a contradiction.

4. Completely Hausdorff spaces. A space X is completely Hausdorff
if for every pair of distinet points x, y in X, there exists a real-valued
continuous function f on X such that f(x) # f(y). We say that a com-
pletely Hausdorff space (X ,.7) is minimal completely Hausdorff if there
is no completely Hausdorff topology properly contained in 7. If (X, 7)
is completely Hausdorff and is closed in every completely Hausdorff
space in which it is embedded, we say that (X, .7) is completely Hausdorff
closed.

THEOREM 5. A minimal completely Hausdorff space (X,7) s
compact.

First we observe that (X,.7) is minimal completely Hausdorff if
and only if every one-to-one continuous function from (X, ) onto
a completely Hausdorff space is a homeomorphism. Let F be the set
of all continuous functions from (X,.7) to [0, 1]. Define g: X —[0,11"
such that g(x); = f(«). Then ¢ is continuous since each feF' is continuous.
If @ +# y, there exists on feF such that f(x) # f(y), so g is one-to-one.
Hence ¢ is a homeomorphism, and (X,.7) is completely regular. Since
(X, .77) is minimal completely Hausdorff, it is minimal completely regular;
by [3], (X,J) iIs compact.

Using the method of Theorem 5, we see that completely Hausdortf
implies compactness in minimal Urysohn and minimal Hausdorff spaces;
see [7], p. 290.

It is not true that a completely Hausdorff closed space is compact,
even if it is absolutely closed.

Example. Let X consist of the points a;,c¢;, and a, where i,

Jj=1,2,...,in the notation of [4]. It is easy to see that X is absolutely
closed and completely Hausdorff, but not compact.
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Finally we observe that the proofs of Theorems 1, 2, and 4 give
methods of constructing strictly weaker paracompact, metric and com-
pletely normal topologies from non-compact topologies of the same type.
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