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The aim of the present paper is to introduce and investigate a notion
which is a generalization of the notion of uniformity on a given set. It
is known that by means of uniformities one can describe all properties
of completely regular topologies on a given set, including the theory of
compactifications, which coincides with the theory of completions of
corresponding totally bounded uniformities (Smirnov [11] and Isbell [5]).
Our generalization provides a possibility of obtaining several kinds of
extensions of arbitrary topological spaces. We will show a close con-
nection between H-closed extension of a given Hausdorff space (Katétov
[6]) and completion of a totally bounded uniformity in our sense. The
theory of extremally disconnected resolutions (Iliadis [4]) can be also
described in our theory. Recently also Fedoréuk [3] found an approach
to the theory of resolutions by means of a certain kind of generalized
uniformities, but his uniformities depend on the topology of a given set.

It is known that theories of uniform spaces in the sense of neighbour-
hoods of the diagonal and in the sense of coverings are equivalent. The
theory of uniform spaces in the sense of neighbourhoods of the diagonal
was extended by Csaszar [2] and Pervin [9]. They showed that every
topological space has a quasi-uniformity (i.e., a family of sets satisfying
conditions of a uniformity, except for that of symmetry), which induces
the original topology. Our theory is not equivalent to the theory of quasi-
-uniform spaces. Also a generalization due to Morita [8] and Rinow [10]
by means of coverings does not coincide with that of ours.

Proofs of theorems, which are analogous to the corresponding theorems
for uniformities, will be sketched only or wholly omitted.

1. Preliminaries. Let X be a set. If P < 2%, then | P denotes the
union of all members of P. An inlersection of P, and P, is the family
P, AP, = {u,Nuy: uePy, uye P}, If M < X, then the star of M with
respect to P is the set

st(M,P) = J{ueP: un M # O}.
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The star of one point set {r} is denoted by st(z, P).

If for every zeX there exists u,e P, such that st(z, P,) c u,, then
we say that the family P, is a pointwise-star-refinement of the family P,,
in symbols P, >1- P,. Symbols P, > P, mean that the family P, is a refine-

ment of the family P,.

A family P, is called a star refinement of a family P,, in symbol
P, a— P,, iff for every u,e P, there exists u,e P, such that st(u,, P,) < u,.

We say that a family P is a pointwise n-star-refinement of family @
iff there exists a finite sequence P, > P, > ... > P, such that P = P,
and Q = P,; in symbols P 7 Q. ' ! !

Now we shall state three lemmas easy to prove.

1.1. If elements of a family P are mutually disjoint, then P > P.
1.2. If P, >2-P2, then for every xeX there exists we P, such that

st[st(z, P;)] < u.
1.3. If P, >2 P,, then P, > P,.

2. Axioms of f-uniformity. Let X be a given set. A family # c 92¥

is called an f-uniformity on the set X if the following conditions are satis-
fied:

Fl1. If xeX, then there exists Pe # such that xe | P.

F2. If for every xe (P there exists P e # such that xe (P, and
P, > P, then Pe%.

F3. If P,, Pye % and ze | J (P, A P,), then there exists Pe % such that
zeJP and P> PiAP,.

F4. For every xe¢X and for every P,,P,e #,if xe | ) P,, then there is
st(z, P, )NJ P, # 9.

Elements of f-uniformities will be called fullfilments.

If we assume that every element of f-uniformity # is a covering
of X, then axiom F4 is superfluous and axioms F1-F3 coincide with the
axioms for uniformities (cf. Isbell [5]):

Cl. Family # is non-empty.

C2. If P,¢ % and P, > P,, then P,e %.

C3. If P,, P,e %, then there exists Pe % such that P > PiAP,.

A pair (X, %) consisting of a set X and an f-uniformity  on the
set X is called an f-uniform space.

3. Bases and subbases of f-uniformities. A family Z < % is called
a base of an f-uniformity # if, for every Pe # and every xze( )P, there
exists Qe # such that ze| JQ and @ > P,
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Let us notice that

3.1. Every base of an f-uniformity % satisfies conditions F1, F3 and F4.
It is easy to notice that

3.2. If a family B < 2% satisfies conditions F1, F3 and F4, then
the family % = {P < 2%: for every x| J P there exisis Q ¢ B such that x| J Q
and Q a— P} is an f-uniformity for which # is a base.

In such a case we say that # is induced by the base .

A family 4’ < % is called a subbase of an f-uniformity # if the family
of all finite intersections P,A ... AP,, where P;e # and ¢ =1,...,n,
is a base of the f-uniformity %.

3.3. Let a family B < 9% satisfy conditions F1 and
F3a. If P,e B and xe \JP,, then there exists Pe B such that xe| P
and P > P,.

Fda. For every xzeX and for all finite intersections P,A ...AP,
and QA ... AQ,, where P;,Q;e B, i =1,...,n and j =1,...,m, if
el (P A ... AP,), then (@A ... AQy) Nst(x, PyA ... AP,) #0.

Then the family & of all finite intersections P, A ... A P,, where P;e B’
and © =1, ..., n, satisfies conditions F1, F3 and F4, and, according to 3.1,
it induces an f-uniformity % called f-umiformity induced by #'.

Of course, #' is a subbase of the f-uniformity .

4. A topology induced by an f-uniformity. In this section we show
that every f-uniformity on a set X induces a topology on this set and,
conversely, every topology on a set X induces an f-uniformity on this set.

4.1. If % is an f-uniformity on a set X, then T, = {G = X: for every
x € G there exists Pe U such that x e\ J P and st(x, P) = G} is a topology on X.
T, is called the topology induced by %.

4.2. The interior of a set A = X in the topology T, is the set {xeX:
st(x, P) = A for some Pe ¥ such that xe| ) P}.

Proofs of 4.1 and 4.2 are analogous to proofs of the corresponding
theorems in [5].

43. If Pe% and xe | J P, then xeint st(z, P).

Every family of sets of the form int st(x, P), where x¢ X, Pe # and #
is a base of the uniformity #, forms a base for the topology 7, .

From the axiom F4 it follows that

4.4. The unions of all fullfilments from a given f-umiformity % are
open and dense in the topology Ty, i.e., if Pe ¥, then O} = X and int| P
= UJP.

4.5. If # is a base for an f-uniformity %, then the family B° = {P°:
Pe B}, where P° = {int w: we P}, is a base for the f-uniformity % and for
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every Pe & there is | JP = JP°. Elements of the fullfilments from %° form
a base for the topology Ty .

Proof. It is obvious that P° > P. It suffices to show that P%e¢ #.
Let we( JP’. There exists P,e % such that ¢ J P, and P, > P. From 1.2

and 4.2 it follows that P, > P°. According to F2, P’¢ %. The remaining
part of the theorem follows from 4.3 and F3.

4.6. If T is a topology on X, then it is induced by an f-uniformity
(not mecessary umnique) having a base consisting of fimite fullfilments the
elements of which are mutually disjoint sets.

Proof. Let T, = T be a base for the topology 7. We define the
f-uniformity # as the f-uniformity induced by subbase #':

B = {P,: weT,}, where P, = {u, X —%}.

We shall verify that the family £’ satisfies conditions from 3.3.
Condition F1 is obvious and condition F3a follows from 1.1. Now let
us verify that F4a is satisfied. Let us notice that the unions | JP,, ueT,,
are open and dense in the topology T. This implies that a union of each
open intersection P,A ... AP,, where P,e #' for ¢ =1,...,m, is open
and dense in the topology 7. Hence if xel J (Q,A ... A Q,,), then

st(@y, Q1A ... AQR)NUJ(PLA ... AP,) =0

for every P;, Q;e &', i=1,...,nand j =1,...,m.

The topologies T and T, are equal. Indeed, for every finite sequence
P,...,P,, where P;e #, st(x, PyA ... A P,) belongs to T. Hence Ty < T.
Let ueT and xeu. There exists u,eT, such that zewu, < . We have
we st (w, Py)) = Uy = u. Thus T < Ty.

S. The greatest f-uniformities inducing a given topology. Let T be
a topology on a set X.

5.1. There exists the greatest f-umiformity in the set of f-uniformities
inducing topology T on X.

Proof. Let M be the set of f-uniformities inducing topology T'.
In the same way as in 4.6 we verify that family & = () {#: % «#} satisfies
conditions of 3.3. It is easy to notice that the f-uniformity induced by
the subbase #' is the greatest among f-uniformities inducing topology T.
In the same way one can prove that

'3.2. There exists the greatest f-uniformity in the set of f-umiformities
inducing topology T and having bases consisting of finite fullfilments.

This f-uniformity will be called the greatest totally bounded f-uni-
formity.
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5.3. If a family P contains a finite subfamily @ such that
UP = U {intu: ue@Q} and X =0,

then P is an element of the greatest totally boumded f-uniformity.

Proof. For every zeJQ there exists Q. such that z¢(J@Q,, Q, > Q
and every element from @, is open in topology 7.

Indeed, let Q@ = {u,,..., u,} and let us assume that zeintwu,. Then
we define
Q. = {vy,...,v,}, where v, =intu,,...,v, = intu, — (%, V... Vu,_,).

The elements of @, are mutually disjoint sets, X = (@, and @, > Q.

Let # be the greatest totally bounded f-uniformity inducing topology 7.
A family # = #v{Q,: xe | JQ} satisfies conditions of 3.3 and induces
a totally bounded f-uniformity #*. It is easy to see that the topology T
is induced by #*. Thus we have #* = %. Now according to F2 we conclude
that Pe %, because for every xe| J P there exists @,e  such that xel JQ,
and Q, > Pp.

S54. If UP = U {intu: ueP} and X = | {intu: ue P}, then P
belongs to the greatest f-uniformity.

Proof. Let  be the greatest f-uniformity inducing the topology T.
It suffices to show that for every z <) P there exists a family P, consisting

of mutually disjoint open sets such that ze| JP, and X = {JP,. Then
it can be proved in a similar to 5.3 that P, e  and, in consequence, that
Pe.

Let v el J P. There exists ue P such that xzeintu. Let S be a set with
inclusion ordering such that if @ € 8, then 1° int u ¢ @, 2° @ > P, 3° elements
of @ are mutually disjoint.

Let So = 8 be a chain. Notice that (J S,e 8. Now, by Kuratowski-
Zorn Lemma, it follows that there exists in § a maximal element P,.

To complete the proof it suffices to show that X = (J P,. Suppose that
X + |JP,.Since X = |JP, we infer that t UP—UP, #9. There exists
an open set u, # @ such that u, < (JP— UP and %, < u,, where u, e P.
The family P,uU {u,} belongs to S and is greater than P,, but this contra-
dicts the fact that P, is a maximal element in S.

It follows by this proof that

5.5. A set of elements, which are families consisting of open mutually
disjoint sets and having dense unions, is a base for the greatest f-uniformity.

6. Axioms of separation. An f-uniformity # on a set X is called
a T, f-uniformity iff for every pair of different points x, y ¢ X there exists
Pe% such that
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(Ty) ze \JP or ye | JP and st(z, P) nst(y, P) = O.

It is called a T, f-uniformity iff for every pair of different points
x, ye X there exists Pe % such that

(T,)) z,ye JP and y¢ st(z, P).

It is called a T, f-uniformity iff for every pair of different points
x, ye X there exist P, P'e  such that

(T,) xe UP, ye \JP' and st(z, P)Nnst(y,P’) =0

It is called a 75 f-uniformity iff it is a T'; f-uniformity and

(T,) for every Qe % and x¢ | Q there exists Q' ¢ # such that ze st(z, Q')
< st(x, Q).

It can be proved that

6.1. An f-uniformity % on a set X is a T; f-uniformity iff the topology
Ty its T; for ¢ =0,1,2, 3.

If elements of # are coverings, then conditions (7',)-(T;) are equivalent.

7. Maps. Let (X, %) and (Y, ¥") be f-uniform spaces and let g: X —-Y
be a map. We introduce additional notation:

={a: ueP}, g(P)={g(uw): ueP}, g Q) ={g7'(v): ve@Q},

and d(x, ¥) < P means that there exists we P such that (z, y)e u.

A map ¢g: X - Y is called uniform relative to the f-umiformities %
and ¥ (in symbols, g: (X, #) — (Y, ¥")) iff for every Qe ¥, g7 (Q)e %.

7.1. Let By, B, be bases of f-uniformities % and ¥". The following
conditions are equivalent:

(a) g: (X, %) - (X, ¥) i8 a uniform map

(b) For every Qe By and for every g(x)e | Q there exists Pe By such
that xe | JP and g(P) > Q.

(c) For every QeB,f and for every g(x)e | JQ there exists Pe By such
that xe | JP and

(*) for every x,yeX, if 6(x,y) <P, then d[g(x), g(y)] < Q.

The proof is not difficult.
From 4.5 we infer

72. If g: (X, %) - (X, V") ts uniform, then the map g: (X, Ty) —
— (Y, T,) is continuous.

From 4.4 it follows

7.3. If g: (X, %) — (X, ¥) is uniform, then for every Qe ¥, g~* (U Q)
18 open and dense in the space (X, Ty).

Conversely, theorem 5.4 implies

74. If ¢g: (X,T) - (X, L) i8 a continuous map and, for each Pe ¥,
97 (U P) is open and dense in (X, T), then g: (X, %) — (X, ¥) is a uniform
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map, where U is the greatest f-uniformity inducing the topology T and ¥
18 an f-uniformity inducing the topology L.

- If ¢g: (X,%) - (Y, ¥) is a uniform map and %, ¥ are the greatest
totally bounded f-uniformities, then the map g¢: (X,T,) - (Y,T,)
is continuous and skeletal (Mioduszewski and Rudolf [7]), i.e., int ¢~ (%)

< g '(v) for every open v in T'..
Indeed, {v, Y —v}e¥", whence

X =¢g'vu(Y-9)], X =¢g'(0)uX—g7'(®), X—X—g (D) = g7} (v),

i.e., int g~1() = g~ (v).

Example. Let D be the discrete topology and T' the natural topology
on the set of real numbers and let %, and % be the greatest f-uniformities
inducing the topologies D and T, respectively. From 4.4 it follows that
elements of %, are coverings. The identity map is continuous but not
uniform.

An important role for extension of uniform maps play maps called
@-uniform.

A map ¢: (X, %) - (Y, ¥") is called O-uniform iff for every xeX
and for every @ « V such that g(z)e | @ there exists Pe # such that xe | J P
and for every pair of points z, yeX if é(x, y) < P, then d[g(x), g(y)] < Q.

Let us state without proof the following proposition:

75. If g: (X, %) - (X, ¥) i8 a O-uniform map and ¥ is Ty f-uniform-
ity, then the map ¢: (X, Ty) — (XY, T, ) i8 continuous.

8. Cauchy filters. Let (X, %) be an f-uniform space. A filter ¢ is
called Cauchy filter iff for every Pe %, P N is non-empty.
It can be proved in a way analogous to that in Bourbaki’s book that

8.1. For every Cauchy filter & there exists a Cauchy filter &,, called
the minimal Cauchy filter of &, such that for each Cauchy filter &,, if & < &,
then &, < &,.

The filter &, is induced by the base & = {st(A4,P): Ae &, Pec &)},
where £’ is a base of & and # is a base of %.

82. A family & = {st(u,P): ue PNE Pe B}, where B i3 a base
of «, is a base of the minimal Cauchy filter &,.

Let n(z) = {st(x, P) #O: Pe%}. A point xcX belongs to the limit
of Cauchy filter & xelimég, iff n(x) < &.

8.3. Let & be a Cauchy filter. The following conditions are equivalent:

(a) xelim§;

(b) zelim&,, where &, is the minimal Cauchy filter of &;

() we M {d: Ac &}

84. If % is a T, f-uniformity, then each limit of Cauchy filter contains
at most one point.
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If % is a T, covering f-uniformity, then each point xeX is a limit
of exactly one minimal Cauchy filter with the base #(x). This is not
true if # is not covering f-uniformity.

Example. Let X ={0,1, 4, %,...} be a subspace of the space of
real numbers with the natural topology and let % be the greatest f-uni-
formity inducing the topology on X. A family P = {{1},{}},...} is an
element of %. There is no Cauchy filter & such that 0 = limé.

Indeed, this follows from the definition of Cauchy filter and from
8.3 that there exists we P, u = {1/n}, such that 0%, but 0¢ (J {{1/n}:
n=12..}%

Example. Let X ={—1, —%,...,0,..., 3,1} and let  be an
f-uniformity induced by the base

B={P,:n=1,2,...}U{Q,: » =1,2,...},

where

R IR RO

and

o=t 22 2 2]

Let &,, & be the filters induced by

. 1 11
51 ={(O’;)Q_X: n =1,2, ...}U{(—;, ;‘) NX: n :1,2, ...},

, 1 11
& ={(__—,0)0X: n =1,2,...}u{(——,—)r\X: n =1,2,...}.
n n ”n

It can be verified that (a) & # &,, (b) &, and &, are minimal Cauchy
filters, (¢) 0 =lim¢&, = lim &,, and (d) #(0) is not a base of Cauchy filter.

8.5. If % contains a base consisting of locally finite fullfilments, then
every point xeX is a limit of Cauchy filter.

Proof. By Kuratowski-Zorn Lemma it follows that 7(z) is contained
in a maximal filter & the elements of which have non-empty interiors.
Let P be a locally finite fullfilment. Since P is locally finite and ¢ is a maxi-
mal filter, there exists e P, int u # @, such that ue & This implies that &
is a Cauchy filter.

Let us notice
8.6. If ze M {UP: Pe %}, then n(x) is a base for a Cauchy filter.
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9. Complete f-uniform spaces. An f-uniform space (X, %) is complete
iff every Cauchy filter has a non-empty limit.

9.1. Every f-uniform space (X, %) is embeddable in a uniform and
dense manner into a complete f-uniform space (X %) such that if % is totally
bounded, then U is totally bounded, and if % is T';, then U is T, sfori =0,1,2,

Proof. Let X, be a family of all minimal Cauchy filters having
empty limits. We define on the set X=X vX, an f- umformlty % induced
by the base & — {P Pe #}, where 4 is a base of # and P = {u: we P},
= uU{feX,: ue &. The f-uniformity % does not depend on the choice
of a base # in %, because if P, > P,, then P1 > P2

A. The family” U satisfies conditions F1-F4.

F1. From the definition of # and from the fact that elements of X,
are Cauchy filters it follows that X, < (J P for every Pe %. Hence X
=U {U P: Pe 5&}

F2 is obvious.

F3. Let us notice that if P,, P,e #, then P1 A P2€ 02/ hence it suffices
to show that for every Pe % and for every xe UP there exists P, e # such
that P1 a-P and ze UP 1 if yeX, then

st(y, U{u yeuePl}c'DeP

where ve P is such that st(y, Pl) < v; if ye X, then there exists uy e P, Ny,
i.e., yeu, and -

st(y,Py) = U {#: yen,ueP}c U {#: uniu, #0,ueP;}
< [8t(uo, P1)]™ =9,

where v is such that ve P and st(u,, P;) = v. We put P, > P.
F4. Let Py, P,e # and ze | JP,; if <X, then

O +#st(x, P;) =« UP, < st(z, P;) N Py
if xeX,, then for every ISeOZ; Ze Uf’ and hence U # st(x, f’l)u U1~’2.

B. The map i: X < X is a uniform embedding. Indeed, for every
Pe B we have

PA{X} ={#nX: weP} ={u: ueP} =Pc B %.

C. The topological space (X, Tq,) is a dense subspace of (X T3).
Indeed, for every £¢X, and for every Pe# there is@ #u = X Nt cXn
Nst (&, P), where ue P is such that ue &.
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D. The space (i ) é/) is complete. Let & be a Cauchy filter. According
to 8.3, it may be assumed that & is a minimal Cauchy filter. From 8.2
it follows that interiors of elements of & are non-empty and hence the
family & = {A N X: Ae ¢} is a filter. It is easy to see that & is also
Cauchy filter in (X,%). Let &, = £ be the minimal Cauchy filter of &. If there
exists 2 ¢ X such that # e lim &,, then it is obvious that ze lim & If @ = lim &y
then &,elimé. Let uye P be such that u,e & and u,e £. But if Uge &g,y
then &,¢ %, and %, = st(&,, P), whence &, lim &.

E. If # is T;, then x is T; f-uniformity, ¢« = 0,1, 2. We give the
proof for ¢+ = 2 (proofs in other cases are similar).

Let «,,2,eX and a, # z,. Examine separate cases.

(e,) @, w,eX. There exist P,, P,e # such that x,e | JP,, z,e P,
and st(z,, P,) Nst(xy, P;) = GD. Suppose e st(wl,Pl) nst(wg,f’z). Then
there exist u,e P, and u,e P, such that z,eu,, x,eu,, and u,, u,e &;
a contradiction with %, Nnu, = @.

(ey) x,eX and x,eX,. Since x,¢ limz,, there exist, according to 8.2
and 8.3c¢, P, P;e#% such that z,e¢ | JP, and st(z,, P,) Nst(u, P,) = G,
where #ex, NP,. From the definition of @ it follows that st(xl,ﬁl)n
Nst(xy, Py) =0

(e3) #,, ;e X,y. From 8.2 it follows that there exist u,e P, tye Pye U
such that st(u,, P;) Nst(u,, P,) = 6 and Uy €ty NPy, usex, NP,

Suppose there exists £est(z,, P ) Nst(x,, P ) This implies the existence
of u,eP,, uze P, such that ujex,, uyex,, and u; Nuye & From u, Nu; # B,
Uy Ny # D and u; Nu, #* G, if follows that st(u,, P,) Nnst(u,, P;) %« @;
a contradiction.

9.2. Remark. In cases (e,) and (e;) we have not referred to the fact
that # is T;, 1 =0, 1, 2.

The space (X,, %,), where %, = {{X oy AP:Pe 0}}, is called a remainder
of the completion of a space (X, %).

9.3. The remainder X, is a completely regular space.

More precisely, the f-uniformity %, on the set X, is T, covering uniformity.

Proof. Let us notice that X, = (") {U P: Pe 02/} From Remark 9.2
and from (e;) of the proof of 9.1 it follows that #, is a T, f-uniformity.

Let A be a dense set in a space (X, T'). It can be verified that %,
= {{A}AP: Pe%} induces an f-uniformity on the set A.

9.4. Let (X, %) be an f-uniform space, (Y, ¥') — a T, complete f-uni-
form space, and let (A, %,) be a dense subspace of (X, %) such that

X—AcN{UP: Pe?}.

Then every uniform map g: (A, %4) — (Y, ¥") has O-uniform extension

g*: (X, %) — (Y, ¥).



GENERALIZATION OF UNIFORMITIES 237

Proof of the theorem is similar to the proof of a corresponding theorem
for uniformities.

10. f-compact spaces. A filter £ is called open iff interior of every
element of £ is non-empty.

10.1. Every open filter & is contained in an open filter int & with a base
consisting of sets of the form int A, where A &.

10.2. Every open filter & is contained in a maximal open filter.

Proof follows from the Kuratowski-Zorn Lemma.

A space (X, T) is called f-compact if for every family 8 < T there
exists a finite family S, = 8 such that if X = (J 8, then X = (U {G:
Ge 8y}

It is not difficult to prove (Alexandroff and Urysohn [1]) that

10.3. A space (X, T) is f-compact iff for each open filter & there is
N{d: Ae & #0.

10.4. If an f-uniformity % on a set X is totally bounded and complete,
then the space (X, Ty) is f-compact.

Proof. Let # — % be a base consisting of finite fullfilments, elements
of which are open in (X, 7,), and let £ be an open filter. We prove that
each maximal filter £ ., o &is a Cauchy filter. Hence @ # lim§,,. < lim§&
and from 10.3 it follows that (X, Tp) is f-compact.

Let Pe #. Since | P is dense, for each A€ &, thereis A n | JP # .
From the fact that &,,, is maximal and (JP is open it follows
that (J Pe §pax- But P is finite, hence there exists u ¢ P such that ue {0,
and this means that &,,, is a Cauchy filter.

10.5. If a space (X, T') is f-compact, then every f-uniformity inducing
topology T is complete.

Proof. Let &, be a minimal Cauchy filter. From 8.2 it follows that &,
is open. According to 10.3 and 8.3¢, it is obvious that lim ¢, # @.

10%6. E’very topological space (X, T) can be embedded into f-compact
space (X T) such that iof (X,T) is T;, then (X T) s T;,, 1 =0,1,2.

Proof. It follows from 4.6 that there exists a totally bounded f-uni-
formity % mduolng topology T. According to 9.1, there .exists an embed-
ding i¢: (X, %) < (X 021) where % is totally bounded and complete Theorem
10.4 implies that a space (X T3) is f-compact. We put T = T;.

Let us notice that completion of a covering uniformity is a covering

uniformity. Thus completion of a covering totally bounded uniformity
leads to a compactification.

11. A cover of (X, ). An f-uniformity % on a set X is called gq-uni-
formity iff % is T, and each point x € X is a limit of a Cauchy filter. Theorem
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8.5 gives a partial answer to the question whether a 7', f-uniformity is
a g-uniformity.
Let  be a g-uniformity and let X be a family of all convergent

minimal Cauchy filters in (X, #). On the set X we define a covering uni-
formlty # induced by the base B = {P Pe %}, Where # is a base of %,

= {u: ueP}, and u = {§eX ue &}. The family % does not depend
on a choice of base # < %, because, for every P,, P,e %, if P, > P,, then

P > P2 Between the sets X and X there exists a natural map

n: &0, ¥

defined as n(&) = @ iff x =limé¢, EeX
The map n: X — X is called the cover map and the space (l %)
is called the cover of & space (X, #).

11.1. The family U is a T, covering uniformity on the set X.

Proof. From the definition of a Cauchy filter it follows that every
Pe#is a covering of X. Thus family # is non- empty and each element
of % is a covering. Hence conditions 01 and C2 are satisfied.

Let us check condition C3. Let Pl, Pze #. Condition F3 1mphes the

existence of Pe # such that P > P, A P,. Let us notice that P > P1 A P2
T
= Pl/\P2 Now, it suffices to show that for every Pe @ there exists

P1€ # such that P1 >-P It suffices to take P,e¢ # such that P, > P.

Indeed, if &, &,€ st( 5, .), then there exist #,, #,e P, such that Ele Uy,
Eye tly, and Ee @y Ny, ie. u;e & & =1,2. Let us take #eP, such that
Eeu. Since %, u,, use & u, Nu Nu, #@. This implies that v, Vu, < st(u, P,).
There exisvs ve P such that st(u, P,) = v. The last inclusion implies that
ve fand ve § , © =1, 2, whence &, £,, £ ¢v. This means that st(&, P 1) © v,

thus P > P.
The proof that U is T, is the same as the proof of 9.1 in case (e;).

11.2. The cover map n: (22 %) (X, %) s @umform
Proof. Let us notlce that for every ue Pe % there is n(u) < %, and
hence for each Pe .9«? n(P) > P, where & is a base of #. Since U is a cov-

ering uniformity, condition n(P) > P implies that n is @-uniform map.
From 7.5 it follows that '

11.3. If % is T, then the cover map n: (i y Tg) = (X, Ty) i8 continuous.
11.4. Let % and ¥ be q-uniformities and let g: (X %) (Y )

be a uniform map. Then there exists a uniform map g: (X 02/) (Y 4 )
such that the diagram









