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ON FRAMED LINKS OF PEIFFER IDENTITIES

BY

TOMASZ BORTNIK (TORUN)

0. Introduction. In this note we investigate relations between the framed
links appearing in the description of some homotopies and sequences of
Peiffer transformations acting on identities. Corollary to our main result
(theorem in §3) gives an answer to the first of the two questions set by
P. Stefan in [7]. This article has not been published yet so let us recall the
corresponding fragment:

“To prove (or to disprove) the Whitehead conjecture it is sufficient to
consider the case when the subcomplex L of a 2-dimensional CW complex K
differs from K by a single 2<cell. Paint this extra 2-cell red and all the
remaining 2-cells blue. Assume that n, K =0 and let p = (p,, p3, ..., P,) be
an identity amongst the blue relators (each p; is a conjugate of a relator in L,
or its inverse, and p, p, ... p, = 1 in n;(K'). Then p is equivalent to & by
Peiffer transformations in K. This gives a linkage consisting of a blue part X
anchored to the ‘floor’ and a red part, a link Y, floating above. To prove that-
n, L = 0 we must show that p is equivalent to @ in L, that is that we can get
rid of the red stuff.

If X and Y are geometrically unlinked, we are done. Otherwise, there
seem to be two possible cases:

(1) X and Y are algebraically linked. Part of the problem is to make
this idea precise — perhaps in terms of various degrees shades of blue,
shades of red.

(2) X and Y are algebraically unlinked, but are still geometrically
linked.”.

We obtain that for any link appearing in the framework of the
Whitehead conjecture the linking numbers between any connected toroidal
component of the link and any part of the link with the same shadow is zero.
Therefore one can assume that each connected component of this “red stuff”
is algebraically unlinked with “blue stuff’, so the first case does not occur.

In Section 1 we recall basic definitions and fix notations. In Section 2
we show how links appear in our situation and we make the description of
framed links more precise for the purpose of the proof of our results which
appear in Section 3.
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1. Notations and definitions. Let K be a 2-dimensional connected CW
complex with only one O-cell x,. (By contraction of the maximal tree
contained in the 1-skeleton every 2-CW complex is homotopy equivalent to
some K.) K has a presentation:

K=\/S'ul ¢
Xa l'p

and so =, (K) = {(x,|rs)>, ael, BeJ where I, J are some indexing sets. x,
corresponds to 1-cells of K and r, are elements in a free group F freely
generated by {x,| ael}. Each r, represents the way a given 2-cell e is
attached to 1-skeleton of K. All x,, ael, are different, but there is no such
assumption about r;, fel.

For each 2-cell e} let g; be a 2-disc contained in the interior of e7.
Choose a point x; on o7 and a path 1, in e}\intoj going from x; to x,.

Let us denote by K, the closure of K\(|J 07). Let
pes

f: (DZ’ Sl, l)_'(Ka Kl’ xO)
be a representative of some element in n, (K, K, x,). We can assume (using
transversal arguments) that f is a transversal map on all 2-discs o f i.e., each
S~ (o} is a finite set 57, .. » 0345 Of dlSJOlnt 2-discs in DZ\S each 87,
mapped homeomorphically by f onto o} [3). Let y;;, =f" (x,,)eé
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K, is homotopy equivalent to the 1-skeleton of K, so =, (K,, xo) =
F =gp{x,| ael}. Each path y in

Dz\[ﬂU 0.\ (e D (" \{1))] = D,

going from 1 to some yg; is mapped by f onto a path in K, from x, to x;.
Therefore, the composition f(y)*t, is a loop in K; which gives us some
element f*(y)eF.

Let us choose a set of paths s;; = D, going from 1 to y;; and meeting
each other only at the point 1. Now D, \U Sg,i is an open 2-cell mapped into

K,, so the image by f of its boundary |s contractible in K,.

Now let us order the s,., around 1 and relabel them as sy, ..., s,; we
relabel the corresponding 83, as 6%, ..., 82 (also yj,; as yy, ..., y,) and we will
write 67, to denote that f(67,) = a7.

2. Framed links with labels. Let f’ be another transversal map
J1 (D, 8', 1) > (K, Ky, xo) such that [f]=[f] in n,(K, K, xo); then
there exists a homotopy H’

H': (D*xI,S8'xI,1xI)—(K, K,, xo).

H' can be deformed modulo D?x{0, 1} to H which is transversal with
respect to {c}| BeJ}, i, for each BeJ, H ' (o}) is a disjoint union of solid
tubes with ends attached to D? x {0, 1} and solid tori all labeled with B.
Visually we can color these tubes and tori by p-color. The union (J H™ ' (ap)

forms a solid linkage € in D? xI\S! x1. H™!(xz) is a union of ppaths lying
on the boundary of H™!(a7) which gives us a certain framed link L, colored
by p-color. By the usual knot theory arguments we can choose a plane =
orthogonal to D? x {0} such that projection of our link L= ) L; from a

B
point 1 x {0} onto = is in regular position. By a slight deformation we can
arrange our link so that each twist of the framed link has the following
projection:

instead of
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so the projection reflects the exact number of twists and, except when the

link twists, it remains on the 1 x {0}-side of the boundary of the solid linkage

£. We say that link is in strong regular position if its projection is as above.
For any path v from 1 x {0} to some point of L lying in

D*xI\(2uS' x) £ 4,

its image by H is in K, and when composed with the corresponding ¢, gives
us a loop in K,, so a certain element H* (v)e F. This element depends only
on the homotopy class of the path v with fixed ends.

Let {M,;] be the set of all overpasses of L. We give for each M;; a
label which belongs to F x {rg| feJ}. Let w;, be a direct path in A from
1 x {0} to some point z,;€ M, ;. We define a label of M;; as (H* (w;), ry).
Let u;, be a loop from z;, to z;; which goes once around the solid part of
the linkage in the direction induced by the orientation of é;.

1=10}
The image of the loop w;,*u;z*w;, in =, (K;)=F is
H* (wy5) 1y H*(w; ) 1.

Any fixed orientation of D?x/ and orientation of u;; gives us an
orientation of the framed link L. We have two types of oriented crossings:

(1




FRAMED LINKS OF PEIFFER IDENTITIES n

Let us investigate the relations between the labels of M;, in each case. Let
D?* xI have the “right hand rule” orientation. Let (z, 4, z; ;) denote a path
along the link. ‘

We have

H* (Wk.ﬂ) =H #(Wk.p ‘(Zk.pa Zi.p))

because H((z 4, zi4) = Xs. The path w, (2,4, z;5) is homotopic to the
path w;, *u; ! *w; ! «w;,

orientation of D?x/

0]

so for (I)
H#(wk.ﬂ) = H*(Wj.y) 'r;l 'H#(Wj.),)-l * H#(wi.ﬂ)

and similarly for (II)

H#(Wk.ﬂ) = H#(Wj.y)"'p ‘H#(Wj.y)- '“H* (Wi.p)
in F.

We see that for any connected component of the framed link the H*-
part of its labels taken modulo the relations {r;} in the group =,(K)
= (x,|rg) are the same. Let us take |n, (K)| different shadows in each color
B. Any connected component can be given (g, f) shadow where gen, (K).

PROPOSITION. Given a framed oriented link L in strong regular position in
D? xI\S* xI with ends only on D* x({0}, {1}), together with given labeling of
its overpasses by (f, rp), feF, BeJ. Assume that for each oriented crossing:

(f,r) (g,s) (£, r) ,S)
tgh €F
(n () nst €l )
\h,ﬂ N)
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the relations (I) (h,t) =(gs~'g~'f,r), (1) (h,t) =(gsg™'f, r) hold. Then L
can be realized as a homotopy - between two functions f,, f,: (D%, S, 1)
— (K, K;, xo) determined by LD?*x {0}, LnD? x {1} respectively.

Proof. It is standard construction ([8], Lemma 3, pp. 251-252). =

Each link as above gives us a sequence of Peiffer transformations
between two elements of the free semigroup $(x,: r,) freely generated by the
set F x {rs} U(F x{rs})”! in the following way: By isotoping our link slightly
we can arrange it in D2 x I so that there exist levels {0 =g < ¢, < ... <gq,
= 1} between which the link L involves just a single cap (), an overcrossing
x or x or a cup (J. Then work upward. At each level g, let us read all
labels (f, rg) of overcrossings from left to right. Next if the orientation of the
overpass crosses the level g, downward we do not change (f, rg), but if the
orientation of this overpass goes upward let us take (f, rz)~! instead.

{tr) lg,s)
Example: q '// \\ e (f,r) - (g,5)

Each cup gives us a Peiffer insertion [2] of a subword (f, r)(f,r)~! or
(f, ' (f, r) depending on the orientation

\’/(f,r)or\‘/(!,rl

Similarly each cap gives us Peiffer deletion [2].
Now we have eight types of oriented crossings:

Using the fact that the labels satisfy relations (I) or (II) it is easy to see that
each of the eight types of crossings gives us some Peiffer exchange

(£, 7 (g, 5)’m(g, )’ (gs™%g 1 f, )

or
(f, (g, S’ m(ff g, °(f, 1), & 6= %1,
Example:

q,. Because h =gsg~!f, t =r (II), we

(g,s) X (f,r o have f = gs-1g-'h, so
(h,t) % (ha t)(g, s)m(g, S)(gs—lg-l h, t)-




FRAMED LINKS OF PEIFFER IDENTITIES 73

Therefore we obtain Sieradski rules of labeling on abstract link ([7], §6). It is
easy to see that each sequence of Peiffer transformations of elements from
&(x,: rg) gives us an oriented framed link with labels as described in the
proposition.

3. Toroidal components of link.

THEOREM. Each connected toroidal component of a framed, oriented,
labeled link L in strong regular position in D* x I with ends on D* x({0}, {1})
gives us an identity between relations {ry| feJ}.

Proof. Let us choose a point p lying on some overpass M;; of a given
connected toroidal component. This overpass has the label (H*(w;y), ry)
(proposition). Now let us move the point p along the component of the link
according to the orientation of this component. Each crossing changes only
the first part of the label (H* (w; ), rg) by multiplying it by some conjugates
of the relations with respect to rules determined by (I) or (II). After a finite
number of crossings (using the compactness of D? x I), we return to the point
p, but now the resulting label differs from (H *(w, ), r5) by the number of the
twist in the framed component, so we can compare the resulting label with
the label (H* (w;4) 1}, rs) where ke Z denotes the number of twists (number
of twist in accordance with the orientation—number of twist against given
orientation of the linkage). This comparison gives us

. ]
H*(w; ) rs = .[Ilﬁ";‘.-‘ﬁ—l'H*(Wj.ﬂ)
or
l—[ﬁ'r;i,-'ﬁ._l'H#(Wj.ﬂ)'r;°H#(Wj,p)_l =1
where
j;eFa rﬂe{rﬁ}, 8i=i1. a
Assume now that K is aspherical and a map
f: (DZ’ Sla 1)—’(K7 Kla Xo)

is such that f|;, is contractible in K, (so f represents an element in
n3(K, xo)). Let H be any transversal nullhomotopy of f and L its oriented
framed link with labels in the strong regular position.

Let us define the linking number of a connected toroidal component of
the link L having shadow (g, f) with a part of the link L colored by shadow
(h, 7). Choose a point p belonging to the connected component. Going along
this component according to the orientation let us count the crossings:

g,.8) N (g, B) -1

(h,3) th, )
The sum of given signs gives us the linking number.
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Remark. The above definition is standard if the shadows (g, f) and
(h, y) are different. In the case where they are the same this linking number
takes into account also the number of twists and the selfcrossings of our
connected component.

CoroOLLARY. Let K be aspherical CW-complex. The linking number of a
connected toroidal component of the link L having shadow (g, B) with a part of
the link colored by shadow (h, y) is zero.

Proof. K is aspherical, so any identity is a Peiffer identity. Therefore by
the algebraic characterization of Peiffer identities for

1+ ki

]
l:] ST (H*wig) rg - H* (wig)™ ' =[] fiorg it =

i=1

where rg =r, fi=H*(w;), & =sgnk for i=I+1,...,1+k| there is a
pairing (i, j) of indices i, j=1, ..., I+]k| such that r, =r;, g = —¢; and f
= fymod n, (k). Now going along connected component from the point p this
pairing tells us that we meet each shadow twice with the different
orientations of the crossings (¢; = —¢;), so in the sum which defines the
linking number the coefficients of these two crossings cancel and so all above
linking numbers are zero. =

Remark. P. Stefan asked if a double Whitehead link can appear in a
Whitehead conjecture setting. Considering this link, it is sufficient to consider
only 2-complexes with two 2-cells, but every subcomplex with one 2-cell is
aspherical, so there has to exist another nullhomotopy which is split by discs
([6]), §4) and with the same bottom labels as in Whitehead double link.
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