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ON WEAK AUTOMORPHISMS OF QUASI-LINEAR ALGEBRAS

BY

KAZIMIERZ GLAZEK (WROCLAW)

1. In this paper we shall examine weak automorphisms of quasi-
-linear algebras in which + is an algebraic operation and 0 is the only
algebraic constant. For the terminology and notation used here see [13],
(3], [8]. |

An algebra A = (4; F) is said to be quasi-linear if the following
conditions are satisfied:

(i) the set A is a subset of an Abelian group G,

(ii) for any operation fe A™ (n =1, 2,...) there exist unary opera-

tions f,, fay ..., f, on A (not necessarilly algebraic) such that
n
(1) f@sy @) = D) fi(®y),
g=1

where the summation is the group operation in @G,

(iii) there exists a one-to-one unary algebraic operation ¢ such that
the binary operation r(z,y) = q(z)— q(y) is algebraic.

It follows from (iii) that zero-element of G is an algebraic constant
in .

As is known (cf. [3]), the class of quasi-linear algebras coincides
with the introduced by E. Marczewski in [10] class of separable variables
algebras. Among groups (or more generally, among n-groups; see [4])
only. Abelian groups are separable variables algebras. £2-group is a sepa-
rable variables algebra iff it is an Abelian Q-group (for definitions see [12],
p. 115 and p. 147). Various variants of a notion of independence in sepa-
rable variables algebras (in quasi-linear algebras) are examined in [2]
and [6].

It is known (cf. [3], Theorem 3) that the algebra (4; 4) becomes
an Abelian group under certain assumptions on the quasi-linear algebra
A = (4; F) (although -+ need not to be an algebraic operation in ).

Now we shall prove

LemMMA 1. If A = (A; F) is a quasi-linear algebra such that
() the operation -+ 1is algebraic in U,
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(B) 0 is the only algebraic constant in U,
then every algebraic operation f can be expressed in the form

n
(2) F(@1y ey @) = D hy(ay),
j=1
where h; are endomorphisms of the semigroup (A; +).
Proof. Any algebraic operation in a quasi-linear algebra has the
form (1). Put h;(x) = f;(x) —f;(0). Then we have

f@yy ooy m) = i) = ' f00) = 3 fi (@) =f;(0)] = D hy(a;),

ji=1 ji=1

because, in virtue of (8), f(0, ..., 0) = 0. Obviously, 4;(0) = 0 for every
j=1,...,n, and so all operations h; are algebraic (although f; need not
to be algebraic operations). In view of the definition of a quasi-linear
algebra, there exist unary operations g and k» on A4 such that f(x,, x,)
= h;(®,+ @) = h(x,)+9g(x,), since feA®. Therefore h;(x,) = h(x,)+g(0)
and h;(z,) = h(0)+ g(x;). Taking now into consideration A(0)+g(0) = 0
we infer that h;(x,4x,) = h;(x,)+ h;(x;). Hence h; is an endomorphism
of the semigroup (4; +) and the proof of Lemma 1 is completed.

It seems worth to notice that if in a quasi-linear algebra with the
only algebraic constant 0 is given an algebraic operation f of the form (1),
and if some f; is an endomorphism of the semigroup (4; +, 0), then f;
is an algebraic operation in . For that purpose it suffices to notice that

2 fi(0) =0.
1#7

2. Let f be an n-ary algebraic operation of an abstract algebra %,
and let v be a one-to-one transformation of A onto A. Let us define a func-

tion f* by the equation
(3) @y, ..., 2,) = tf(rv7 @y, ..., 17 0,).

If the mapping f— f* is a one-to-one mapping of the class A onto
itself, then the mapping r is called a weak automorphism.

This notion (and, more generally, notions of a weak isomorphism
and of a weak homomorphism) has been introduced by A. Goetz and
E. Marczewski (see [8] and [11]). It turns out that Abelian groups have
not essentially weak automorphisms. And even more, a group @, in which
the square of every element belongs to its centre, does not have any weak
automorphism which is not automorphism or anti-automorphisms [8].
Weak automorphisms of Boolean algebras and so-called Post algebras
have been described in [14]. Description of weak automorphisms of integral
domains appears in [7]. Recently, J. Dudek and E. Plonka have examined
in [1] weak automorphisms of v*-algebras (defined by E. Marczewski),
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a special case of which are linear spaces. The proofs of Theorems 2 and 3
of this paper take use of the same ideas as Dudek’s proofs for linear spaces.

To start with we shall examine certain properties of the transfor-
mation * induced by a weak automorphism of quasi-linear algebras.
Obviously, 0* = 0, and if he A" is an endomorphism of the group (semi-
group) (4; +), then also h* is an endomorphism.

LeMMA 2. If + 48 an algebraic.operation in the quasi-linear algebra A
with the one constant only, then

(x+y)* =2+y.

As a matter of fact, there exist unary operations ¢ and » on A such
that the equation (z+y)* = (v~ + t~'y) = g(«x)+ h(y) holds. Applying
now Lemma 1, we infer that ¢ and & are endomorphisms of the semigroup
(4; +). Putting y =0 we get © = g(x) for every xeA. Similarly, for
every yeA, we obtain y = h(y) and so the proof is completed.

LemMMA 3. Equations
(4) r*(z,y) = ¢* (=) —q*(¥),
(5) (—9* = —¢*
hold true in any quasi-linear -algebra.
Indeed, let r*(x,y) = f(x)+g(y). Then
(0,9) = 7(—gq(z7'9)) = f(0)+4(y),
r*(z,0) = 7(¢(z'z)) = f(2)+9(0).
Now taking into account that f(0)+g¢(0) =0 = r(0, 0), we infer
(6) r*(z, y) = q¢*(@)+(—9)*(y).

Putting = y in (6) we get r*(z, 2) = (v tz, v x) = 0 = ¢*(z)+
+(—¢q)*(x). Hence (5) holds. From (5) and (6) follows (4).
LeEMMA 4. For every algebraic operation

n

f@yy ooy 2p) = Zf,-(w,-)

in a quasi-linear algebra with the only constant O there is

n n

@y, ..., @) = (Zf,(m,))* = Zf(fj(f_l-wj)—ff(o))-

J=

In fact, there exist operations g, such that

[* @1y e @) = D) g5(®)).
j=1



194 K. GLAZEK

Putting ¢, =2, = ... =a;,_, = ®;,, = ... =2, = 0 and taking into

account that Zn‘ f;(0) = 0 we obtain
7(fi(z7 2;) = £;(0) = g;(x;) — ;(0).

Since 2 g;(0) = 0, our lemma easily follows.
=1

In partlcular, if f, are endomorphisms of the group (semigroup)
(43 4+, 0), then it follows by Lemma 4 that

(7) (2mw¥=§ﬁm»

From Lemma 1 it follows that f,-* also are endomorphisms of (4; +).

3. If a quasi-linear algebra U satisfies assumptions of Lemma 1 we
shall denote by E () the set of endomorphisms of the semigroup (4; +)
which appear in the representation (2) of some algebraic operation.

Since 4 is a subset of an Abelian group with the group operation -+,
then, as is easy to notice by putting h(—2z) = — h(x) for ze A4, any endo-
morphism A of the semigroup (4; +) can be extended to an endomorphism
of the group® = (4 U (— 4); +). And conversely, any endomorphism of the
group (AU(—A); +) is an endomorphism of the semigroup (A4; +).

By the remark following Lemma 1, with the respect to super-
positions of functions, F(A) is a semigroup with 0 and 1, whence
E®) c AV, And from the assumption that 4 is an algebraic operation
it follows that E () is a subsemiring (*) of the ring E(®) of all endomor-
phisms of the group ® = (Au(—4); +).

Moreover, as follows from the definition of a quasi-linear algebra,
E(A) has the following additional properties:

q(hy) — q(hs) e B(A)
—q(hy) = q(—hy) e E(N)

THEOREM 1. If a quasi-linear algebra U satisfies conditions (a) and (B),
then the set of all automorphisms of the semigroup (A; +), which induce the
one-to-one mappings of E () onto itself, coincides with the set of all weak
automorphisms of .

Proof. If an algebra A satisfies assumptions (x) and (8), then, by
Lemma 1, any algebraic operation has the form (2). Let = be an auto-
morphism of the semigroup (4; +) such that the induced mapping * is

for all  hy, hye E(N).

(1) By a semiring we mean an algebra (S; 4 , ‘) such that (S; +) and (S;-)
are semigroups and the multiplication - is two-side distributive with the respect to
the addition + . This notion was first introduced by H. S. Vandiver in [15] (see also

(51)-
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one-to-one and onto E(A). From (7) it follows then that the mapping *
is-one-to-one and onto A. - _
Conversely, if 7 is a weak automorphism of algebra %, then, by Lemma 2,
7 is an automorphism of the semigroup (4; +). By Lemma 1, unary
algebraic operations are endomorphisms of (4; +). induces one-to-one
mapping  of 'E(A) onto itself, because any weak automorphism maps
the set of n-ary algebraic operations A™ onto itself (for every n = 0,1,2,
...). Therefore the proof is completed.
" One may conjecture that by the asumptions of Theorem 1 the
mapping * induced by a weak automorphism of the quasi-linear algebra A
is an automorphism of the semiring E(¥). In fact, the more is true:

THEOREM 2. If a quasi-linear algebra W satisfies conditions (o) and (B),
then the factor group Aut*W/Aut A can be isomorphically embedded into
the group of automorphisms of the semiring E(UA) (where Aut* A and Aut A
denote the groups of weak automorphisms and automorphisms of U, respecti-
vely).

Proof. The idea of the proof is the same as that of the proof of
a Dudek’s theorem for linear spaces (see Corollary 1 of Theorem 1.2 and
Theorem 1.1 in [1]). For every weak automorphism r we define the mapping
¢.: E(W)—~ E(A) by the equation ¢,(h) = h*, he E(¥). In other words,
th(z) = @.(h) (t2). It is easy to verify that ¢, is an automorphism of the
semiring E(A) (we use Lemma 4 to verify that ¢, is a homomorphism
of the additive semigroup). Next we define mapping @: Aut*(A) - Aut
E () by the equation & (r) = ¢,. It is easy to see that @ is a homomor-
phism and that the kernel of this homomorphism, Ker &, coincides with
Aut A (use equation (7) for the proof of inclusion Aut A > Ker @), which
completes the proof of Theorem 2.

It seems worth to notice that a linear space A = (A; +,A("); AeK)
over a field K or, more generally, a unital left-module over a ring R with
the unity 1 (12 = « for every xeA) is a quasi-linear algebra satisfying
assumptions of Theorem 2. The elements of E (W) are in a one-to-one
correspondence with the elements of the whole field K (or of the whole
ring R, resp.). Thus

COROLLARY 1 (J. Dudek). If A = (4; +, A("); 2eR) is a unital left-
-module over R, then the factor group Aut* A/Aut A can be isomorphically
embedded into the group of all automorphisms of R.

Note that for a linear space A over K the factor group Aut* A/Aut A
is isomorphic to the group of all automorphisms of K. This fact is a con-
sequence of the existence of a basis for every linear space and is a simple
corollary of Theorem 1.2 in [1]. We say that the algebra A has a basis
if it 'has an independent set of generators (for the definitions see [13]).
Similarly to Theorem 1.2 in [1] one can prove the following
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THEOREM 3. If a quasi-linear algebra W has a basis and satisfies condi-
tions («) and (B), then the group Aut* U is the normal product of the group
Aut A and of the group of all automorphisms of the semiring E ().

Thus we have

COROLLARY 2. If a quasi-linear algebra A has a basis and satisfies
(a) and (B), then the factor group Aut* A/Aut A is isomorphic to the group
Aut E ().

COROLLARY 3 (J. Dudek). If A is a unital left-module over R with
a basis, then the factor group Aut* W/Aut A is isomorphic to the group Aut R.

As is known (see [9]), any group is isomorphic to the group of all
automorphisms of a certain commutative ring with unity. Therefore,
taking ring R with unity as a left-module over itself we have the following

COROLLARY 4. For any group G there exists an algebra U such that the
factor group Aut* W/Aut A is isomorphic to the group G.

Finally, we prove a theorem which is a generalization of the unpubli-
shed Dudek’s theorem for linear spaces:

THEOREM 4. If a quasi-linear algebra U satisfies (), (), and

(y) any algebraic operation in A has the form (2), where h; are, for every j,
automorphisms of the semigroup (4; +),

then the group of all weak automorphisms of the algebra U is the only ma-
ximal subgroup of the group of all automorphisms of the semi-group
W, = (4; +,0), which contains as a normal subgroup the set A (W) of those
automorphisms which appear in the form (2) of some algebraic operations.

Proof. It is easy to notice that 4 (A) is a subgroup of Aut A,. Let
us denote by # the family of those subgroups of Aut %, which contain
A (A) as a normal subgroup. Obviously, A (A)e #. From Lemma 2 we
infer that Aut* A < Aut A,. It is easy to check that A () is a normal
subgroup of Aut* A, thus Aut* Ae o#. Now let G* denote the group gene-
rated by the union of subgroups belonging to the family . Obviously,
for any Ge X we have G c G*. Therefore Aut*¥ c G*. Now we shall
prove that G* < Aut* A. Let ge @*. Then there exist subgroups G;e X
and elements ¢,¢@, (¢ =1, ..., n) such that g is a superposition of g,, i.e.
g =¢,0¢:0...0¢,. Hence g is a one-to-one mapping of 4 onto itself.
It remains then to show that g induces a one-to-one mapping of 4 onto
itself. For that purpose it suffices, by Theorem 1, to show that g induces
a one-to-one mapping of 4 (W) onto itself, but this is an easy consequence of
the fact that 4 (A) is a normal subgroup of G; for¢ =1, ..., n. The theorem
is thus proved.

Note that a linear space over a field K satisfies all assumptions of
Theorem 3 (among algebras satisfying those assumptions are also, for
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instance, derived Abelian groups & = (G; +, —,0) and algebras
(@; {+, —, 0}UAut®)). Hence we have

COROLLARY 5 (J. Dudek). If U =(4; +, —,0,A(—): ieK) is
a linear space over a field K, then the group Aut* U is the only maximal
subgroup of the group of all automorphisms of the Abelian group W, = (4;
+, —, 0), which contains as a normal subgroup the set of all functions A(x)
= Az for every 1 # 0 (Ae¢K).
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