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ON THE ORBITS OF HAT-FUNCTIONS

BY

MAREK C. ZDUN (KATOWICE)

The object of this note is to study the orbits of some hat-functions
defined in the interval <{0,1> whose values escape from this interval.
This problem has been considered in papers [1] and [3].

Suppose that a function f is defined in a set X and X < f(X). The
iterates f" of the function f are defined as follows:

o) ==, f*(z) =f(@) if ff@)eX, n=0,1,2,..

Two points x, yeX are said to be equivalent under f if there exist
non-negative integers m. and » such that both f™(z) and f*(y) exist and
™(x) = f*(y). The set of all points which are equivalent to a given x
will be called the orbit of x under f. The orbit of an = will be denoted by
C(x) (see [2], p. 14).

We prove the following result:

THEOREM. Let a real-valued function | be defined and absolutely con-
tinuous in the interval I = 0,1, where f(0) = f(1) = 0. Moreover, let f
be strictly increasing in an interval {0, a), strictly decreasing in {a, 1),
f(a) > 1, and essinf {|f' ()|: we f'[I]} > 1. Then the set C = {we I:f™(x) < 1,
n=1,2,...} i¢ nowhere-dense and perfect. If xeC, then G_(w—) =C (in
particular, C(0) = C). If ye INC, then C(y)\C(y) = C.

Proof. Let the function f satisfy the assumptions of our theorem.
We introduce the following notation:

I, =¢0,a), "I, =<a,1) and f; =f|1£ for : =1, 2.

Let T = {weI: f(#) > 1}. T is an open interval.
First we show that C is nowhere dense. We have the relation

~ 00

(1) U f[T] =INC,

n=0

where f°[T] = T and f~™"'[T] =f"'[f"[T]].
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Since the function f is continuous, the sets f~"[T'] are open, and
hence the set C is closed.

Let us suppose that there exists an interval U contained in C. Then
f*[U]< C forn =0,1,2,... In view of the continuity of the function f,
f*[U] are intervals. Since f(a) > 1, we infer that a¢ C and, consequently,
a¢ U. Therefore, U c I, or U < I,. Moreover, C = I\T, whence U < I\T.

Let
a = essinf {|f'(x)|: wef1[I]}.
Then |f'(x)| > a > 1 almost everywhere in I\T7.
Since the functions f; are monotonic and absolutely continuous in I,
for an ¢« we have

m(f[U]) = m(f;[U) = [Ifi@)de> [adze = am(U),

U U

where m denotes the Lebesgue measure.
Further, by induction, we get

m(ff[U])=a"m(U) forn=1,2,...
Hence
1>=m(C)=m(f"[U]) = a"m(U).

Since a > 1, the set U is of measure zero, but this contradicts our

supposition.
This shows that the set C has no interior points. And since C is closed,

it is nowhere dense.
We have the relation

(2) 7B = £ [BIYSB).

The functions f; are homeomorphisms of the sets I; onto the interval
0, f(a)>. If B is an open interval contained in I, then f~![B] is a sum
of two disjoint open intervals.

The set T = {we I: f(x) > 1} yields an open interval (¢, d) = I such
that f(e) = f(d) = 1. Then the set f~"[T] is a sum of 2" disjoint open
intervals U,, (k =1,2,...,2") whose ends belong to the orbit C(1)
= (C(0). We may write

21!;
(3) f_”[T]=HUn,k7 n=07172"°-

It is easy to verify the following property:

(i) If f~1[A] = A and zeA, then C(z) c A.

From the definition of the set C it follows that f~'[C] = C. Hence,
for each # in C, C(x) = C. And since C is closed, we have €z)cC. In
particular, %) < C.
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Let e C. The set C is nowhere dense which implies that, for any
open interval U such that xe U, UN(I\C) # 0. Hence relation (1) implies
that there exists a non-negative integer » such that Unf™"[T] # 9.
From relation (3) it follows that there exists an integer k¥ such that
UnU,, #9. We know that U and U, , are intervals as well as xe U
and #¢ U, ;. Hence UNnFr(U, ;) # @, and so we have UNC(0) # @, since
Fr(U,;) < 0(0). This shows that xe C(0). Thus C(0) = C.

We show that 0e C(x).

Put g(x) = fi(x) — for ze I,. Since |f ()| > a a.e. in I,\T, we have
g () > a—1 a.e. in I,\T. Hence g is strictly 1ncreasmg in (0,¢) = I \T.
The equality g(0) = 0 implies f,(z) > & for z¢ (0, ¢). Then z >f ) >0
for ze(0,1), and so 0 < fi" () < f{"(x) for n =0,1,2,... Conse-
quently, there exists

lim fi*(z) =g,

n—>00

while the . continuity of f;i' implies that fi!(q) = ¢, whence nee ¢ = 0. For
all positive integers n, fi "(«)e C(x). This shows that Oe C(w)

Let xe C. It is easy to verify that f;'[C(x)] = C(x)nI, for i =1, 2.
The functions f; are homeomorphisms. Consequently,

f7M0(@)] = C(@)nL; = C(@)nL;, i=1,2.
Hence by (2) we get

0 (@)] = C(2)nI,uC(x)nI, = C(x).

Since 0 C(z) (w) we have, by property (i), C(0) = C(x). Therefore
C = C(O) c O(w) Thus C(z) = C.

To prove that C is perfect it suffices to show that xe O\ {z} for z¢ C.

The function f has two fixed points — 0 and z,e(d, 1). For these
two points we have C(0)NnC(z,) = 9. Evidently, 0 and z, belong to C.
Hence the set C contains two disjoint orbits.

Let x¢C. Then there exists a yeC such that ¢C(y). We have proved
that Wy) = (. Therefore, for any neighbourhood U of x, (U\{z})NC(y)
# @, whence

(U\{z})nC G and Un(O\{z}) #0.

This shows that xeC\{z}.
Now we show that C(y)\C(y) = C for any yeI\C.

We have the property C(0)\{x} = C. In fact, the equality C(0) = C
implies

C\{x} =« C(0)\{z} = C.
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Thus C = C\{wi < C(0)\{x}, since C is a perfect set. The sets f~"[0]
are finite, so it is clear that for any positive integer N and for the set

N
Cn(0) = C(O)NUS[0]

n=0

we have Cy(0) = C.

It is easy to verify that f™"[T]nf~™[T] = O for » # m. Hence (3)
implies that U,, for ¥ =1,...,2" and n =0, 1, ... are disjoint inter-
vals contained in I. Then

oo

(4) D D m(Uy) <1.

n=0 k=1

For any é > 0 there exists an integer N (4) such that m(U, ;) < 6/2
for n > N(é) and k¥ =1, ...,2"

For yeINC, C(y)nC = D. Moreover, for any » and kt=1,..., 2%
C(y)n Un,k 7 9.

Let zeC and 6> 0. Then xeCyy(0). Therefore, there exists
a 2¢Oy (0), and ze(x—46/2,2+6/2). Since the ends of the inter-
vals U, , for n > N () belong to Cy(0), and C(0) is a set of all ends
of the intervals U, ,, there exist » > N(J) and k such that zem. On
the other hand, m(U,;) < 6/2. Thus U,,; < (x—dJ,x+ 6) and, conse-
quently,

Clyyn(rx—dé,x+8) #0.

This shows that zeC(y). Thus C = C(y)\C(y).

Now we prove the opposite inclusion. Let zeC(y)\C(y). There exists
a sequence ¥,e¢C(y) such that

Yo 2y, Yy #y;for i #j, and limy, =ax.

n—+»00

00
The orbit C(y) is contained in | f~"[I], since y eI\ C. From equality (3)
N=(
it follows that for any = > 0 there exists an interval U,,,m,,“ such that

Yn€Un i - For n % n we have U, , NUp . =@, since the inter-
section C(y)n U, , for any »n and k is a single point. Hence it follows that
limm, = oo

n1—>00

and further, by (4), that

lim M( U”'mkn) = 0-
fn—>00

We may write Uy, ;. = (a,, f,), where a,, f,¢0(0). Then

lim(a, —B,) = 0.

n-—»00
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Since

Ype(ag, By) for n =1,2,... and limy, =z,
fn—00

it follows that

limea, = @.
Nn—»00
Therefore #eC(0) = C.

COROLLARY. Assume that a function f satisfies the hypothesis of the
Theorem and that a real-valued function ¢ defined in the interval f[I] satisfies
the functional equation

(5) o(f@) = p(@), ael.

If @ is continuous at an xyeC, then ¢ is constant in 1.

Proof. Let ¢ satisfy equation (5) and be continuous at z,¢C. Rela-
tion (5) implies that ¢ is constant on every orbit C(z).

Let z€C. Since C(z) = C, there exists a sequence z,¢C () such that

limz, = a,.
n—00

Similarly, if xeI\C, then from the equality C(z)\C(x) = C it follows
that there exists a sequence z,eC(x) such that

limz, = a,.
n—00

Hence, by the continuity of ¢ at x,,

limg(z,) = ¢(@,).
n—>00
Moreover, ¢(z,) = ¢(x) for all n, whence ¢(z) = ¢(x,). Thus ¢ ()
= @(z,) for zel.
If the function f satisfies assumptions of the Theorem except for

essinf {|f'(a)|: wef'[I]} =1,

then the Theorem is not true. This is shown by the example given in [1].

It is easy to see that, for f(x) = 3/2 — |32z —3/2| and zeI, C is the
Cantor set.

The measure characterization of the set C for some functions has
been given in [1] and [3].

The set C for some functions plays a role in biological research works
(see [1]).
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