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1. Denote by K an algebraic number field, by n and 4 the degree and
discriminant of K, respectively, and by {x(s), s = g +it, the Dedekind zeta-
function. Moreover, we write d = 2|4|.

It is well known that the properties of {4 (s), and especially the distribu-
tion of its roots, are strictly connected with the distribution of prime ideals
(see [6]).

Write

Yk(x)= Y logN(p) and Ax(x)=yg(x)—x.

N <x
The prime-ideal theorem in its simplest form can be written as
Yr(x) ~x, x—o00.

The function Ag(x) is called the remainder-term of the prime-ideal theorem.
The oscillatory character of 4x(x), K #.Q, was first investigated by
Landau [5], who, using the methods of Littlewood, proved that

L Ag (x)+ z x%/o

(1.1) lim =050
x-~® \/;c_log log log x
and
Ax(x)+ Z x*/o
(1.2) =9 <0,

lim
o \/; log log log x

where the sum is to be taken over the real roots of {x(s), lying on the
positive real axis (if there are any).
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It is well known that {(s), s = ¢ +it, has infinitely many zeros ¢ =
+iy in the strip 0 <o <1, —0 <t < + of the complex plane.

We denote by y, = 0 the imaginary part of the “lowest” {x-zero in the
half plane ¢ > 1/2:

yk = inf 7.
PEETENE T
Denote by VK(T') the number of sign changes of Ax(x) for 2 <x< T

From a theorem of Poélya [8] it follows that if {x(s) # O for s€(0, 1),
then

— W (T) _ v
— >,
rh.t.r:o log T n

Under the assumption that the natural extension of the Riemann hy-
pothesis to the Dedekind zeta-function is true it can be proved by a method
of Ingham [2] that

. V(T
‘I!ITma) logT ~ 0

In the following we shall restrict ourselves to algebraic number fields K
such that (x(s) has no real zeros in the interval (0, 1).
Subject to the above assumption, the second-named author proved that

Vk (T)
(13) 71_% loglog T
(see [1] and cf. [4]). In the proof of (1.3), Turdn’s one-sided theorems were
used (see [13]).

2. Before stating our theorems we introduce some notation.

All the constants ¢;, i =1, 2, ..., are numerical and effectively comput-
able. The same is true for the constants implied by the symbols O and <.

For the sake of convenience, we introduce the following notation: if f is
a complex-valued function and g is a positive-valued function, both defined
on a set 2 of complex numbers and satisfying the inequality |f(x)| < g(x),
x €82, then we write

f(0)=0(g9(x), xeQ.

It can be proved that there exists a numerical constant ¢, such that
0 < yx <c, for every K (see [10] and cf. [12], Lemma 5). Therefore

df
%X =supyx < .
K
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Y

Neugebauer [7] has recently proved using Siegel's methods, that »x < 60.
Obviously,
(2.1) x=7=1413...

E. Artin stated the conjecture that if K and L are given algebraic
number fields and K < L, then the quotient {x(s)/{.(s) is an entire function.
From this conjecture and (2.1) it would then follow that

x =17y =1413...
It is interesting to observe that this Artin’s conjecture is proved to be correct
in many cases (see [14]).
Denote by o = B+iy and ¢ = B'+iy’ any different zeros of {(s).

For an arbitrary ¢, 0 <e¢ < 10, we define the following constants con-
nected with {-zeros:

Tg(e) = min {ly=yl: y # 7, bl, Iyl <='%},

By(e) = min {|8—B1: B, B'€(0, 1), B # B, I, Iy] < %%,

If all zeros ¢ = B+iy with |y| < x'%® are situated on the line ¢ = 1/2,
then we put Bg(e) = 1.
If y¢ # 0, then we have the following obvious inequality:

(2.2) %FK(G) < Yk < X, 0<e<10.

3. Now we can state the following

TueoreM 1. If K is such that {k(s) has no real roots in (0, 1), then for
any ¢, 0 <& < 1, there exists an effective constant c,(¢) > 0, depending only on
&, such that for

1 1 logd
T > exp {co(e) (Bx(s) + r%(s))log (2+ e )log2 d},

we have the estimate

Vi (T) >(1—s)yflogT.

Introducing as the modified remainder term
A9 = 4x(x)+ ¥ %o
y=0
(cf. (1.2)) and denoting by V¢ (T) the number of sign changes of 4%(x) for
2 <x < T, we get the following unconditional result:

THEOREM 2. For any ¢, 0 <& < 1, there exists an effective constant c, (¢),
depending only on ¢, such that for

1 1 logd 5
T = exp {cl (e) ( B + r2 (8))log (2+ o )log d}
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we have the estimate
E(=(1 —s)y?xlog T,

In Theorem 1 we assume that {4 (s) is free of zeros in the interval (0, 1).
It is easily seen that an assumption of this kind is, in a way, necessary for the

existence of sign changes of A4x(x), since the terms ) x%p in the
y=0
Riemann-Mangoldt formula generalized by Landau (see [6], Satz 195) can
decide on the oscillatory character of 4x(x). For instance, if K is such that
{x(s) has zeros on the positive real axis and if
supReg > supRey,
y=0 y#0
then Ax(x) = yx(x)—x is of one sign for x > x,.
A number of {y-functions which have no zeros in (0, 1) is well known.
For {x-functions which do not have this property see [1].
The method of proof of Theorems 1 and 2 was introduced by the first-
named author to the investigation of the number of sign changes in the
remainder term of the prime-number theorem (see [3]).

4. For the proof we need some lemmas.

LemMa 1 ([12], Lemma 6). If s = o +it, then there is a connected path L
in the vertical strip 1/22 < 6 < 1/20 say, symmetrical to the real axis, consist-
ing alternatively of horizontal and vertical segments and increasing monoton-
ically from — oo to + oo, on which for all {x-functions we have

Cx

4.1) “=(s)| < ¢, log?(d(jt]| +2)").
K

LEMMA 2 ([12], Lemma 4). Let Nx(T) be the number of zeros of {x(s)
in the rectangle 0 < o<1, 0<t< T Then for T >0 we have

4.2) Ng(T+1)—Ng(T) < 3 log (d(T+2)").
The following is the well-known fact:
LEmMMA 3. For any K we have

4.3) n <logd.

LEmMMA 4 (see [9], pp. 4041). Let f be a real-valued, piecewise continuous
Junction, non-constant in every interval (a, b), 0 <a <b < oo, and such that
the integral

A
(I) |f (x) dx
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is finite for every A > 0. If v(T) denotes the number of sign changes of f in the
interval (0, T] and V(T) denotes the number of sign changes of the function

F (x) =£f(t)dt

in the interval (0, T], then for T >0 we have V(T) < v(T).

5. Proof of Theorem 1. Denote by m a sufficiently large positive
integer which will be precisely determined later. For a function f defined over
the set of positive numbers we determine

sfm-1 11 )  dty_;dt,
(5.1) Sn(fi =] [ . [S0O= S
0

0 tm—2 tm-l

if the integrals on the right-hand side do exist.
From (5.1) and (1.1) we get

1 2+im CK
Om-1(4dk; x)=2_1ti2_'[ {_E(S)} ds—x

- - Ll ol

e>L

where L is the path from Lemma 1 and the sum runs over all {x-roots lying
to the right of L.
By (4.1) we have

< | log?(d (Jtl + 2)")|? |ds]

log? (d(|t|+2)")x
T

(5.2 ‘— f{——m} ds

o |ds|

<  max ——log’d <20™x'/2%]og?d,
1/22€0€1/200"

and the last inequality is true for m < (1/22)log x.
Moreover, by (4.2) and (4.3) we obtain

| ¥ x¥e" < mmd

oL
17l > 10/e

Denote by B, <, <...<pf, <1 the real parts of the {x-roots in the
region

{s: s> L, |Ims| < x'%},



190 J. KACZOROWSKI AND W. STAS

Then
Om-1(dg; X) = — Z é,(x)+0, (20"'x”2°log2d+ ~Tome logzd)

where

P,(x)= Y x*/o"™

Now, let us denote by

o, = B,+iy, = lelexplio,}, 7, >0,v=1,2,...,1,
the “lowest” zero lying to the right of L, such that Reg, = f8,. Then

v

(5.3) ®,(x) = {cos(y,log x—mp,) +r,(x)},

I|"'
V

where e, := ord g, and

ro(x) = oyl T xo"

v X By eeE (e

and the sum is over zeros g satisfying the following conditions: ¢ > L, Reg
= B,, 7, <ly] < x'%. Thus we see that

r ()l < Y leJel™ < lo,* max |g,/oI™ 2Z:Iel 2

e€cE (¢e) e<E ()
and
1T @ : [ e ,,
LiE= X X <X pt lledkay)
e k=0 ¢ p “
h<lvlsk+1 ||<,
1 logd
<—logd+logd < g2 .
Yk Vi
Now
e|_ [ty v -y
ol VB N B+
_ \/1+"”' D+
ﬂv+)’v
We have

I =1y = |I"l=In)| = Tk (@),
1Y+ 1y, = §Tg(€)+ 3Tk () = Tk (o),
BZ+vy2 < 14220,
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Consequently,
2 20/e
oy ST = 14— A"
' l+\/l+l",2(/(1+x20/e)
d ) N (G

l . = O /o
+(1 +32%%) (1 + /1 +4%2/(1 +32°)) 3(1+22%)
and
lov/el < [1+TE(E/(3(1+x29)] .

Finally, we have

(54) I, ()] < (14x10%)2 ( 1 ),..- 2logd

14+ TR e)/(3(1+%2°) K

For the sensibleness of (5.3) it is necessary that |r,(x)] < 1. Obviously,
the stronger inequality |r,(x) < 1/2 takes place if

(142192 ( : " < ai
14+ T2 (e)/(3(1 +32%%)) ’

ie.,

logd(l +x10/e)2 < [1 +~r’2‘ (8)/(3(1 +x20/¢))]m—2

Cs—
K

for a sufficiently large cs > 0.
The last inequality holds if

cs ("’;d + 2)2(1 +51%2 < [14 T2 ()3 (1 +x29)]" 2,
K
log (log d)/yx +2) + log (1 +x" %)
log [1+ T'Z(e)/(3(1+x29)]

m-— 2 > Ce
for a sufficiently large c¢ > 0.
Finally, we have the following condition for the parameter m:

log ((log d)/yx + 2)+ log (1 +2* %)
log[1+ I'Z(e)/(3(1+x%2%9)]

(5.5) m2=2+cg

Now, we restrict the range for x as follows:
T"2<x< T

The parameter m will be determined later (see (5.8)) in such a way that m
will tend to infinity together with T.
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Hence, for T > T, (K, &) we have |r,(x)] < 1/2for v=1, 2, ..., . There-
fore, each term &, has an oscillation absolutely greater than or equal to

e, x’"/lgvl”'. Suppose that for a certain vy, 1 < v, </, the oscillation of the
vo-th term is maximal. Then, by (2.2),

Buo
&oX ord g x°K S x1/2

low ™ = lexl™ T (14x)™

where ox = Bx+iyx, Bx = 1/2, denotes the “lowest” zero of {x(s).

Now, we have to determine the conditions under which one of the terms
1

in the sum ) &, is dominating over the other terms.

v=1

Putting
u,(t) = .t —mlogle,|
and supposing that n > 0, we consider the set
A(T, n) = {t: (e/Qlog T<t<logT, |u,(t)—u, (O =n
for all v# v, 1<v, v I}

If I =1, then, obviously,

A(T, n) = [(¢/2) 1og T, log T].
If t¢ A(T, n), then -

|t(B,—B,)—mloglee.|| <n

for some v # v'. Hence

log |o./0v] n
t—m < ,
\ ﬂv—ﬁv' Iﬁv—ﬂv’l
which proves that
, 1
I[(e/2)log T, log T\ A(T, n)l < 293"
vEY Iﬂv—ﬂv’l
20/e c (8)
< log? (dx»'%") < =1~ plog2d.
Bx(s)n g8*( ) Bx(a)n g
Therefore
c7(e)
AT, n)l =(1- - 24,
|A(T, n)l = (1—¢/2)log T BK(S)nlog d

which implies that for a sufficiently large cg(¢) we have
|A(T, Lx(e)log T) = (1—3¢/4)log T,
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where

Lk () = B (e)/! (Ca () 1082 d)-
We have further

]
A(T, Ly(e)log T) = U 1.,
v=1

where I, are intervals determined as follows:

I, ={tel(¢/Qlog T, log T]: u,(t) = maxu,(t)+ Lg(e)log T}.

B*EV
Moreover, it is easily seen that I, NI, = @ for v # v’ and that at least one of
the intervals I, is not empty.
For lo'gxelvo, by (5.3) and (54) we have (only if (5.5) is satisfied)

!
2 &,(x) = &, (x)+O0(Imax|®, (x)))

v=1 v#vg

2e,,
= 1 {008 (1 log x=m,) +0(1/2+0, (log ) T~}
v0

Finally, for logx€l,, we have
(56) Om-1(dx; x)

=_"0 = {cos(yvologx—m(pvo)+6(1/2)

Lvte 1+3)™
+0,(T" " “10gd)+0, (( ’L,,’;) 20™ x1/2%)0g2 d

(1+%)™ x
+ 12 5 10me 1032‘1)}

28v0 xﬁVO ) — — Lk(2)
r cos (1, log x—me, )+ 0(1/2)+ 0. (T log d)

leve

m 1 "
+0, ((20(1 +x))" T~%/4%log2d+ T2 (x;::) log? d)}

Like before, the remainders in the last formula have to be made “small”
enough, so that the cosine-term could prevail. Thus we have the following
conditions which restrict the range for m:

¢ (€)(20(1+ %)) log2d < T/4°

13 — Colloquium Math. 56.1
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and

xlO/e m
C10(e) TY?log?d < (l+x) .
The first condition is satisfied if
9
mlog (20(1 +x))+2 log log (d+2) < 4—glog T—c,, ().

Thus

(9¢/40) log T—c,, (¢)—2loglog(d + 2)
m<
log (20(1 +x))

_ 9¢
~ 40log (20(1 +x))

The second condition is satisfied if
c12(e)+(1/2)log T+ 2loglog(d + 2) < (10m/e)log x —mlog(1 +x).

log T+ 0, (log log (d + 2)).

This means that
S (1/2)log T+ 2loglog(d +2)+c¢,,(¢)
= (10/¢) log % —log (1 + )

and, finally,

€
16log »

m> log T+ 0, (log log (d + 2)),

since
(10/¢) log x —log (1 +x) > (8/¢) log .

For the existence of an integer m having the above properties it is
sufficient that

log log T+ O, (log log (d + 2)),

—log T< %
16log x 401og (20(1 + 1))

which is obviously equivalent to the condition

9logx
log T .
0gT <% log(20(l+x))log T+ 0, (log log (d+ 2))
Since the function
9logu
f) =5t

2.510g(20(1 +u))
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is increasing for u > 1, the last condition is satisfied only if

9log 14
2.5log(20-15)

5.7 logT < log T+ O, (log log (d + 2)).

However,

= >1.
2510g(20-15) ~ 2510g10° 75~

Therefore, (5.7) is satisfied if
T > exp(c,3(e) loglog (d + 2)).
We can determine the integer m by putting

_1(1/2)1og T+ 2loglog(d +2) +c, 2 (e)
(58) m= [ (10/2) log % —log (1 + %) ]”‘

Obviously, m > 2. It remains to prove that
m < (1/22) log x,

which is necessary for the estimate (5.2) to be true.
From (5.8) it follows that

_ (¢/2)log T
" 10logx —¢log (1 +x)

9log 14 9log10 9

+ 0, (loglog(d + 2)).

Further we "have
10logx —elog(1+3) = 10log x —log(1+x) = 10log 14—log 15 > 23.
Hence for T > exp(c,4(¢) loglog(d+2)) we get

(e/2)log T
S T

(e/2)log T
<7 x

<(1/22)log x.

+0, (loglog(d +2)

(¢/10°) log T+ O, (log log (d + 2))

Also, the remainder O,(T " logd) in (5.6) has to be chosen small enough,
e.g., equal to O(1/8). It is really so if

O, (exp { — Lg(¢) log T+loglog(d + 2)}) = O(1/8),
Li(e)log T > cys(¢)loglog(d+2),
T > exp{c,6(¢) Bx ' (¢) log? d log log(d + 2)} .

Now we have to determine the size of T, (K, ¢).
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For T > T, (K, ¢). condition (5.5) has to be satisfied, i.e.,

(1/2)log T+2loglog(d+ 2)+ ¢y, (¢)
(10/e) log x —log log (1 + x)

5 log((log d)/yx +2)+log (1 + %)
Z ST og(1+ TE (/31 + x2))

For this it is sufficient that

log T > 1-,?:)) og (logd+2)

T?exp{ ”:)) og(logd+2)}.
Thus we can take

Rk, 0 = exp {22 0g (%242

and finally that

All the conditions together are satisfied if

1 1 logd
T> To(K, &) = exp {co(e) (B,((s) +r%(8))log (%+ 2)log2 d}.

For such T and logx€l,, we have
Bvo

(5.9) Om—1(dx; X) = {cos(y,, log x—me,))+0(3/4)}.

I Volm
From (5.9) it follows that if ¢t runs over the interval I, , then the function

Om-1(4k; €) has at least

yVo IIVol
n

sign changes. Denote by V™~ !(T) the number of sign changes of the
function J,,_,(4x; x) in the interval (2, T]. Now we can estimate V™~ DT
from below as follows:

V(m- l)(T) ? V(n—l)(T)_ V(m- l)(T‘IZ)
1
> ¥ (”;"w-z)z % |4(T, Le(@) - 0.(10gd)

v=1

71‘:(1-37)1037 0,(logd) > (1 - s) Klog T.
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To complete the proof of Theorem 1 it remains to notice that by
Lemma 4 we have

V(T) = V™~ I(T)

for any natural m > 2 and real T > 2.
The proof of Theorem 2 is similar.
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