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SYMMETRIC TWOFOLD CR SUBMANIFOLDS
IN A EUCLIDEAN SPACE R*™

BY

MINORU KOBAYASHI (SAKADO)

0. Introduction. Bejancu initiated to study CR submanifolds of a Kaehler
manifold ([2], [3]). Since then many papers on CR submanifolds of Kaehler
manifolds and Sasakian manifolds have been published ([5}-[7], [9], [12],
[13]).

Barros et al. studied quaternion CR submanifolds of a Kaehler quater-
nion manifold.

The purpose of this paper is to study, what we call, symmetric twofold
CR submanifolds in a Euclidean space R*™ with global Kaehler quaternion
structure.

Section 1 is mainly devoted to the definition of symmetric twofold CR
submanifolds in R*™.

In Section 2, we give a characterization of symmetric twofold CR
submanifolds in terms with the naturally induced structures on submanifolds.

In the last Section 3, we introduce the notion of the symmetric twofold
CR products and determine them.

The author wishes to express his sincere thanks to the referee for his kind
suggestion and many improvements.

1. Preliminaries. Let R*™ be a 4m-dimensional Euclidean space with
standard Kaehler quaternion metric and standard Kaehler quaternion struc-
ture ¢, (A =1, 2, 3). Then we have

(1°1) ¢§ = —I’ ¢1 ¢y = ¢xa
(l°2) ﬁ¢1 == 0

for any cyclic permutation (4, u, %) of (1, 2, 3) and where ¥ is the Rieman-
nian connection determined by {(, ).

Let M be an isometrically immersed submanifold in R*™ with induced
connection V. We denote by ( , ) the induced metric on M. Then the Gauss
and Weingarten formulas for M are given respectively by
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(1.3) VyV =V, V+B(U, V),
(14) VuyN=—AyU+DyN

for any vector fields U and V tangent to M and any vector field N normal to
M, where B denotes the second fundamental form of M, and D the linear
connection, called the normal connection induced in the normal bundle T*(M).
Then the second fundamental tensor (or the Weingarten map) Ay is related
to B by

(1.5) (AyU, V> =(B(U, V), N>.

The mean curvature vector field H is defined by
(1.6) H = 1trace B,
n

where n = dim M. If H = 0 identically, then M is said to be minimal and if B
= 0 identically, then M is said to be totally geodesic.

‘Definition. A submanifold M in R*" is said to be a CR submanifold
with respect to ¢, if there exists a differentiable distribution 2 on M such
that

(1.7) $:2=92, ¢:2° T (M),

where 21 is the orthogonal complementary distribution of 2.

Definition. A submanifold M in R*™ is called a symmetric twofold CR
submanifold of type (¢,, ¢,) if there exists a differentiable distribution & on
M such that

6.2 =9, b, Pt c TL(M),
d)“ 2t = 94, ¢“9 c TH(M),

where 2* is the orthogonal complementary distribution of 9. We say that
M is proper if neither 2 nor 2*' is null.

Remark. Let ¥ be a 12-dimensional vector space over reals with
almost quaternion structure ¢, (A=1,2,3) and ¢ (i=1,2,...,12) an
orthonormal base of ¥". Let # be ‘a 6-dimensional subspace generated by
ey, ..., €. We put :

D =1{ ey,...,esy and D' = (e, e5).

(1.8)

Now, we write
prey=—e;, ¢re3=€,, ¢res=e;, ¢e5=0¢es,
Preo =e10, Prey; =eys;
Pres =es, Pirey =€y, Pre3=¢e10, ¢re3=e¢yy,

$res = —ey;, ¢re9= —eg.
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Then we see that

die; =e10, P3eo=—e€;, ¢ie;=—ey, P3e9=ey,
Pses =€, Pie = —e3, Pie,=ey, i =—e,,
$ses =eg, Pieg=—es, Pieg=—e;, ¢3e;=¢s,

$12=2, $,2'=92', ¢, 9*'c¥#* and ¢, 2w,
which guarantees the existence of our symmetric twofold CR submanifold of

type (¢1 s ¢2)

2. Characterization of symmetric twofold CR submanifolds. Let M be a
submanifold in R*™. For a vector field U tangent to M and a vector field N
normal to M, we put

2.1) ¢, U=T,U+F,U,
2.2) 6 N=t;N+fiN (A=1,2,3),

where T, U and t, U are the tangent parts of ¢, U and ¢, N, respectively,
and F, U and f; N are the normal parts of ¢, U and ¢, N, respectively. Now,
using (1.1), we have the following identities:

(23) (LU, V)= U, T,V),

(24) {fiNy, N2p> = —<Ny, fi N2,

(2.5) FoU,N) = —<U, t;,N),

(2.6) T?U=-U-t,F,U,

2.7 F, LU+ f,F,U =0,

(2.8) T,t;N+t, N =0,

(29 fEAN+F,t; N= —N,

(2.10) LTLU+;,F,U=-T,TU—-t,F,U=T,U,
(2.11) F,LU+f,F,U=—-F,TU-f,F,U=F,U,
(2.12) Lit,N+t; FN=-T,t; N-t,f,N=t,N,

(2.13) CFut,N+f, fyN=—-F,t; N—f, fiN=f,N.

We begin with
LemMmA 2.1. Let M be a symmetric twofold CR submanifold of type
(@2, ¢,) in R*™. Then

(2.14) $.(T(M)) = T*(M).

Proof. For Xe 2 we have

d’xX = —¢"¢AXE¢“9C TL(M)’
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and for We 2 we have
¢xw=¢l¢uwe¢l@lc Tl(M)’

which proves (2.14).

LEMMA 2.2. Let M be a symmetric twofold CR submanifold of type
(¢, ¢,) in R*™ Then ¢, 2* and ¢, 2 are mutually orthogonal subbundles in

TH(M).
Proof. This follows from
<¢19L, ¢u9> = _<@la ¢l¢u'@> = _<@l’ ¢x9> =0

(by Lemma 2.1).
By Lemmas 2.1 and 2.2, we may decompose the normal bundle T*(M)
as

(2.19) T (M) = $, 9* © 6,2 v,

where v is the orthogonal subbundle of ¢, 2' @ ¢, 2 in T*(M) and it is
eastly seen that v is invariant under the action of ¢, and ¢,.

LEMMA 23. Let M be a symmetric twofold CR submanifold of type
(@2, ¢,) in R*™. Then

(2.16) @ L(TH M) = 2, () 1,(T*(M) = 2,
(2.17) (@) F,t; =0, (b) Fpt,=0.
Proof. Using (2.15), we have
G (T (M) =(—2V)+ 10,2+ ,v =(—2)+ . D+ ¢, v.

Since ¢, 7 @ ¢, v is the normal subbundle, we have

(T (M) = 2.
Similarly, we have
t,(T*(M)) = 2.

Then (2.17) follows immediately from (2.16).

We are now in a position to seek the conditions that a submanifold M
in R*™ to be a symmetric twofold CR submanifold of type'(¢;, ¢,). We first
assume that M is a symmetric twofold CR submanifold of type (¢;, ¢,). Let I
and m be the projection. operators corresponding to 2 and 2+, respectively.
Then we have

(2.18) l+m=1, Im=ml=0, P=1 m=m.
From (2.1) we obtain
& WU =T IW+F,IU, ¢, mU=T,mU+F, mU,
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o, WU=TIW+F,IU, ¢,mU=T,mU+F, mU,
¢, lU=TIW+F,IU, ¢, mU=T mU+F, mU,

whence
¢, 1=T1, F,1=0,
1
(2.19) {d),,.l:F“l, T,1=0, ¢,l=F,l,
¢m=F,m T,m=0,
(2:20) {d)“m:'l;,m, F,m=0, ¢,m=F,m T,m=0.
Then, by (2.18)—(2.20), we have
(2.21) Li=Td-m=T,-Tim=T,
(2.22) I,m=T,(-)=T,-T,I=T,
(2.23) T,=0, F,=¢,.

Next, from (2.7) we obtain
(2249) (@ F,TTWU+f,F,lU=0, (b) F, TmU+f,F,mU =0,
225 (@ F,TLWW+f,F,IU=0, (b) F,T,mU+f,F,mU=0.

Since T;1=T, F;1=0, ,m=T, and F,m =0, we have, by (a) of (2.24)
and (b) of (2.25),

(2.26) F, T,=0, F,T,=0,
which is equivalent to
(2.27) fiF; =0, f,F,=0
by virtue of (2.7). Since
FU, V)=—=U,;;, V) and (F,U, V)= -, V),

formula (2.26) is also equivalent to

(2.28) T,t;=0, T,t,=0.
Therefore, (2.27) is also equivalent to
(2.29) tlfl = 0, t“f“ =0

by virtue of (2.8). Also, since F,m=0 and T, =0, from (2.10) we infer
that T, T, m = 0. Then, from (2.22), we have

(2.30) T, T, =0.
Similarly, we have

(2.31) T,T,=0.
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The conditions (2.30) and (2.31) are equivalent to
(2.32) t,F,=0, t,F,=0

by virtue of (2.10).
Conversely, we assume that

F,t,=0, F,T,=0, F,T,=0, T,T,=0 and T,T;=0.

We put
(2.33) 2={UeT(M); F,U=0, T,U =0},
(2.34) 2 ={UeT(M); F,U=0, T,U =0}.

We first show that 2’ is the orthogonal complementary distribution 2+ of 2
in T(M). For Xe % and Ze 2', we have

(2.35) X, Zy=<$: X, $:Z> = (T, X, F;Z) =0.
And, from (2.6), we have
U=-T2-t,F,U.
Here we have
Fi(-T?U)=-(F,T)T,U =0,
F,(—t;F,U)= —(F,t;)F,U =0,
T(-T?U) = ~(LTYT,U =0,
L(-t,F,U)= —(T,t) F,U =0,
which, together with (2.35), implies 2’ = 2. Thus we have
Fip, X=F,T,X=0, T,¢;X=T,T,X=0,

which shows that ¢, 2 = 2. We next show that ¢, 2+ = T+(M). To see this
we first show that ¢,(T*(M)) = 2*. In fact, for Xe2 and Ne T+(M) we
have

&N, X>= —(N, F,X>=0,

which implies that 2* > ¢,(T*(M)). And, for any We 2* we have
L(—Fa W)= ~,Fa W= —($—f)Fa W = — ¢, Fa W
== W-T, W)= - W =W,
which implies that 2* c 1;(T*(M)) and, consequently, we have
t,(TH(M)) = 2*.
Then, for a tangent vector field U to M, we have, by putting W=t,N
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(Ne TH(M)),
W, U)=<d,t; N,U)=—{; N, ¢, U)
=—UN, LUY=<{N,F,T,U) =0,

which shows that ¢, 2* < T*(M). Similarly, we see that ¢, 2* = 2* and
.2 = TH(M).

Summing up, we have

THEOREM 2.1. Let M be a submanifold in R*™. Then M is a symmetric
twofold CR submanifold of type (¢;, ¢,) if and only if one of the following
conditions is satisfied:

(@ F,t;=0,F,;T, =0, F,T,=0and T, T,=T,T,=0o0r t;F,=t,F,
= 0.

(b) Fut, =0, f,F; =0, f,F,=0 and T, T,=T,T, =0 or t;F,=t,F,
= 0.

(c) Fut; =0, T,t, =0, T,t,=0and ; T,=T,T,=0 or t;,F, =t
=0

uFl
d) Fut; =0, t, =0, t,f,=0 and T, T,=T,T,=0 or t;F,=t,F,
= (.

3. Symmetric twofold CR products in R*™. Let M be a symmetric twofold
CR submanifold of type (¢,, ¢,) in R*™. The following results are known:

Lemma A ([2], p. 138). Let L be a CR submanifold of a Kaehler manifold
with CR structure (2, 2+, J). Then the holomorphic distribution 2 is integra-
ble if and only if

B(X,JY)=B(Y,JX) for all X, YeZ.

LeMMA B ([5], p. 308). The notation being as above, the distribution 2* is
always integrable.

Now, we consider the CR structure (2, 2+, ¢,) of a symmetric twofold
CR submanifold M of type (¢,, ¢,) in R*™ Then, by Lemma B, we see that
2" is integrable. Next we consider the CR structure (2, 92, ¢,). Then, again
by Lemma B, we see that 2 is integrable. Thus we have

THEOREM 3.1. Let M be a symmetric twofold CR submanifold in R*™
Then both distributions 9 and 2* are integrable.

Also, from Lemma A and Theorem 3.1 we have easily

THEOREM 3.2. Let M be a symmetric twofold CR submanifold in R*™.
Then M is a minimal submanifold.

CoROLLARY. There does not exist a compact - symmetric twofold CR
submanifold in R*™

We now give the following definitions:
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Definition. A submanifold M’ of M which is also a submanifold in
R*™ is said to be a ¢,-invariant submanifold (A = 1 or 2) if the tangent space
of M’ is invariant under the action of ¢, at each point p'e M".

Definition. A symmetric twofold CR submanifold M of type (¢,, ¢2)
is called a symmetric twofold CR product if M is a Riemannian product of a
¢,-invariant submanifold and a ¢,-invariant submanifold in R*™ locally.

LemMMma 3.1. We have

(3.1) {$, B(X, Z), N> = (B(¢, X, Z), N),
(3.3) (B(2, 2"), v) = {0}

for Xe 2, Ze P* and Nev.
Proof. We have

(B(X,Z), py N> = V2 X, 9 Ny = —<X, V¢, N}
= —AX, —01 ANZ+ ¢ D;N) = — <, X, ANZ)
= (B(¢: X, Z), N},
which proves (3.1). Similarly we have (3.2). Then, for (3.3), we have
(B(¢1 X, $:2Z), N> = {$, B(X, ¢,2Z), N) = —<B(X, ¢:2), $, N)
= —{(¢$:B(X, 2), ¢, N) = <B(X, Z), $: ¢, N).

This, together with ¢, ¢, = — ¢, ¢, implies (3.3).
Now, calculating 7y ¢,V and Vy ¢,V in two ways and taking the
tangent parts, we have

(34) (Py TV =A4ryU+t, B(U, V),
(3.5)- (PyT)V = Ap,y U+t, B(U, V),

Wherc (70 ’Tl) = Vu Ti V—T‘l VU V.
LEMMA 3.2. If T, (respectively, T,) is parallel, then

(3.6) ty B(X, U)=0 (respectively, t, B(Z, U) =0)
for Xe P and Ze 2*. If both T, and T, are parallel, then
3.7) B(2, 2" = {0).

Proof. Putting ¥V = X in (34) or V = Z in (3.5), we have (3.6) immedi-
ately because of F; X =T, X =0 and F,Z=T,Z =0. Then, for We 2*
and Ye %, we have

<B(Xs Z)’ ¢1 W> = —<t1B(X9 Z)’ W) =Oa
{B(X,Z),¢$,Y>=—<t,B(X,2Z2), Y)=0.
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From these equalities and (3.3) we have (3.7).

Lemma 3.3. If M is a symmetric twofold CR product, then both T, and T,
are parallel.

Proof. Since M is a symmetric twofold CR product, for Ye 2 and
Ze 2* and a tangent vector field U to M we have Vy, Ye 9D and VyZe 2+
Now, we obtain
Vu¢1 Y =Py T, Y+B(U, T, Y).
On the other hand, we have
Vo Y=0,PyY=¢,V,Y+¢,B(U, Y).

Since t, B(U, Y)e 2* by (a) of (2.16), taking the tangent part, we have
Ve, Y =T, Vy Y, which implies (Vy T;) Y = 0. This, together with (¥, T;)Z
=0 (Ze2"), implies VT, = 0. Similarly we have VT, = 0.

THEOREM 3.3. Let M be a proper symmetric twofold CR product of type
(91, @5) in R*™. Then M is a Riemannian product of a ¢,-invariant submani-
fold M™ in some complex linear space C* and a ¢,-invariant submanifold M*
in C>™~4 |ocally, i.e.

M=M xM*cC? chm'—d = R4m
and M is minimal in R*™.

Proof. The minimality is already done (Theorem 3.2). Since M is a
symmetric twofold CR product, we see that T, and T, are parallel (Lemma
3.3). Then we see that B(2, 2') = {0} (Lemma 3.1). Since the ambient

manifold is a Euclidean space R*", our assertion follows by applying a
lemma of Moore [11].

THEOREM 3.4. Let M be a 2n-dimensional complete twofold CR product in
R If TAy=AyT, (i =1, 2), then M = R*".
Proof. Since B(2, 2*) = {0}, it suffices to show that

B(2, 2)={0} and B(2*, 2% = {0}.

Since T AyU = Ay T; U for a tangent vector field U, putting U = X e 2 and
then making an inner product of this with Ye 9, we have

(ANX, Y)=<AvT, X, Y),
whence A
(B(X, ,Y)+B(Y, T, X), N) = 0.
Since N is an arbitrary normal vector field to M, we have
B(X, T, Y)+B(Y, T X) = 0.
This, together with B(X, T, Y)—B(Y, T, X) = 0, implies
B(X, T, Y) =0.
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Replacing Y by T, Y we have B(X, Y) =0, ie,
B(2, 2) = {0}.
Similarly, using T, Ay = Ay T, we have
B(2*, 2% = {0},

which completes the proof.
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