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1. Let H and 5 be separable complex Hilbert spaces. We assume
that dimH > 3. Let 8y and S, denote the structures of all projective
operators acting in H and 5#, respectively.

A homomorphism of the structures Sy and S,, or a spectral measure
(cf. [1]) on the structure Sy is any mapping n: 8 — 8, such that, for
any sequence of mutually orthogonal projections P,, P,,... from 8,
the projections = (P,), n(P,), ... are mutually orthogonal and

n(ZP‘) — ZW(P‘).

A spectral measure = is said to be normed if a(Igz) = I,, where
I and I, stand for the unit operators acting in H and »#, respectively.
A normed one-to-one spectral measure n mapping S8y onto the entire
structure S, is referred to as an isomorphism of the structures.

In the present paper we give a general form of a spectral measure
n: 8g — 8, (Theorem 2)(*). This result is a generalization of the known
Wigner theorem stating that every isomorphism a: 85 — 8, is of the
form ’

a(P) = UPU', Pe@Sg,

where U is a unitary or anti-unitary operator (cf. [3]).

We need the following consequence of Gleason’s theorem (ef. [1]).
A mapping §&: 8y —  is said to be an orthogonal Gleason measure if
for any sequence of mutually orthogonal projectors P,, Py, ... from Sy
the vectors &(P,), é(P;), ... are mutually orthogonal and

6 2B = e,

(}) For the case of a real space H an analogous result has been given in [1].



272 A. PASZKIEWICZ

Then we have

THEOREM 1. For every orthogonal Qleason measure &: 8y — ¥ there
exist S-operators M and M' such that

(£(P), £(Q)) = trMPQ +trM'QP

for any projections P, Q € Sg.

By an S-operator we mean here a self-adjoint, non-negative operator
with a finite trace.

Let H' be a subspace of H, its dimension being of no importance.

Definition. A (non-linear) operator V: H' — is said to be sub-
unitary (or subunitary with constant k) if there exists a real number £,
—~1< k <1, such that
(0) (Va, Vb) = Re(a, d)+ikIm(a,b) for any vectors a,b e H'.

Unitary, anti-unitary and subunitary operators being considered,
we shall always assume that the image of the operator under investigation
is a proper subspace of the space /.

PROPOSITION 1. If V: H' —3# is a subunitary operaior with constant k
(-1 < k< 1), then there exists exactly one represeniaiion

1) V =aVt+p87-,

where V*t is umitary, V= anti-unitary, and a, f € R*; namely,

1+k 1—k
@ a=]/—-2—, ﬂ=]/—2——,

3) Vta = —21—a-(Va—iV(ia)), V-a = %(Va+ﬂ’(ia)),

and VY(H')1 V™ (H').

Proof. Let V satisty condition (0). If a, # and V*, V~ are defined
by (2) and (3), then V'* is a unitary operator, ¥~ is an anti-unitary operator,
and condition (1) is clearly satisfied. Assume now that ¥V has representa-
tion (1). Neither a nor # can vanish (since then ¥ = —1 or ¥ = 1) and (3)
follows directly from (1). Making use of (0) we then obtain (V+*a, V"0) = 0
for any vectors a, b € H'. Thus, by (1),

(Va, Vb) = d*(a, b)+F*(b, a) = (a*+B*)Re(a, b) +i(a* —p*)Im(a, b),
i.e. (2) holds.

2. We introduce now some notation and give certain properties of
spectral measures.

For an arbitrary set M < H let [M] denote a subspace spanned
by vectors from M. When no misunderstanding can arise, we identify a pro-
jective operator with the subspace on which it projects. Let n': Sy — S,
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(# =1,2) be spectral measures. The measures s' and =z® are said

to be orthogonal (n'|n?) if n'(P)|=2(Q) for any projectors P,Q € Sy.

The measure n! is said to be contained in a2 (a' < at) if a1(P) <« a*(P) for

any operator P € 8. One can easily verify the following propositions:
PROPOSITION 2. If n!| n?, then

(7 + %) (P) = #!(P)+a?(P), P eS8y,
18 a speoiral measure.
PROPOSITION 3. If n' < =3, then
(7% —a?)(P) = n*(P)—='(P), P ely,
i8 a speciral measure.
If V is a unitary or anti-unitary operator mapping H into ¢, then
the function [6] — [Ve], defined on one-dimensional projections in H,
generates a spectral measure on Sy (denoted by [V]). If o = V(H),
then [V] is clearly a Wigner isomorphism [V]P = VPV~ ! (P e 8y).
If V' is some other unitary or anti-unitary operator, then the conditions
[V]L[V’] and [V] < = are equivalent to Va_| Vb and Va € n([a]), respec-
tively, where a and b are arbitrary vectors from H.

PROPOSITION 4. If n: Sy — S, 18 a speciral measure and the vector
fe#,|\fil =1, belongs to n([e]) for some e € H, ||| = 1, then one of the
Jollowing three cases takes place:

(a) there is a unitary operator V* such that f = V*te and [V*]< n;

(b) there is an anti-unitary operator V~ suchthat f = V-eand [V™] < =x;

(c) there are a umitary operator Vt and an anti-unitary operator V™
such that f = aV*e+pV-e (a,BeR*), [VY]LI[V ] and [VY]+ [V ]I< n.

Moreover, in each of these cases, the operators V¥ and V= are uniquely
determined.

The last proposition may be reformulated as follows:

PROPOSITION 4'. If n: Sy — 8, 18 a 8peciral measure and the veotor
fea#, |Ifll =1, belongs to m([e]) for some e € H, |e|| =1, then there is
exactly one subunitary operator V: H — ¥ satisfying

Ve =f and Vae=n([a]l), acH.
Indeed, it suffices to put V =V , V =V~ or V =aV* 44V,
respectively.

Proof of Proposition 4. Let n: 85 — 8, be a spectral measure.
For an arbitrary vector x e a mapping &: 85 —# of the form &(P)
= n(P)x, p € 8y, is, as it can easily be verified, an orthogonal Gleason
measure. Thus, by Theorem 1, there are S-operators M, and M, such that

(4) (z(P)z, n(Q)®) = tr M'PQ+tr M"'QP

5 — Collogquium Mathematicum XLIII.2
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for any operators P, Q € 8. Assume that x € n([¢]) for some vector
e€ H, |le) =1. Then

tr(M,+ M.)[e] = (n([e])z, n([e])z) = |io|®
and

tr(M,+M) Iz = |zl

Moreover, M.+ M. is an S-operator. Making use of its spectral distri-
bution one can easily verify that

M, +M,; = |lo|f* [e].
Since the operators M, and M, are positive, we have
M, =f[e] and M, =d[e],
where ¢A12+ﬂ2 = |le| (a, B € R*). Then relation (4) yields
(6)  (n([a))w, #([b))a) = B*tr[e][al[b]+ a’tr[e][b][a]

_ (e, a)(e, b)
el bIP

_ (e, a)(e, b)
el ol

(where k, = (a®—B%)/|x|*) for any non-zero vectors a,b e Z,,
2, ={acH: (a,6) € R, (a,e) # 0} (deH, llell = 1).
For = € n([e]) a function U:: Z, - defined by

(a*(a, )+ 6*(b, a)

||a'"”2(Re(a" b) + ik, Im(a, b))

(6) peq — ol n([a])e, aeZ
. F4 (6, a) ] e
satisfies the condition
el 11B]1?

(Uza, Uzb) = (n([a])=, #([b])=)

(e, a)(e, b)
= |=l*(Re(a, b) + ik, Im(a, d)), a,beZ,.
If fen([e]) and |If|l =1 (e H, |e] =1), we have
(i) (Usa, Usb) = Re(a, b)+ikIm(a, d) (-1 <k,<1) for any vec-
tors a,be l,;
(i) the vector # = Uja is uniquely determined by the conditions

(7) a’_eﬂ([a])y (@, f) = (a,e), zll = llall.

Indeed, if « = Uia, then (7) follows from (6) and (i) as f = Uje.
If (7) holds, then
z([a))f = [z1f+¥,
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where y = (n([a]) — [#])f.L[#]f. Moreover,
(f,z) (e a)

Y = "ler * = "l ”
Thus (cf. (5))
et =2 = ja(Ealfl ana g —o.
By (6),
Usa — lia)? [01f =

(e, a)

Let H be a subspace of H containing the vector ¢ and let dimH > 2.
Let ¥+ and ¥~ stand for unitary and anti-unitary operators, respectively,
mapping H into o, and let V* and V~ denote unitary and anti-unitary
operators, respectively, acting from H to .

(A) If fexn(le]) (Ifl = lell = 1), then for an arbitrary vector ¢ €H,
¢ le, ')l =1, there is a subumilary operator V: [¢']* —H# such that
Ve=f and Vaen([a]), acle']t

([e']t = Ig—[e')).

(B) Let dimH > 2. If 7+a~e n([a]) (a € H), then there is an oper-
ator V*, identioal with V* on H, for which
(8) [V*I<=

Similarly, if V- a € n([a]) (a € H), then there is an operator V~ iden-
tical with ¥V~ on H and satisfying
(9) [V'i<s=

(C) Any subumitary operation V: H —¥ satisfying the condition
(10) Vae=n([a]), acH,

i3 uniquely determined by the vector f = Ve (e € H, |le]] = 1), i.e. the opera-
tore V* and V~ satisfying (8) and (9) are uniquely determined by the vec-
tors f+ = V+te and f~ = Ve, respectively. Moreover, if f* 1 f~, then

(11) [V*ILIV™].

Proof of (A). Making use of the mapping UL, where |f'| =1
and f’ € n([e’]) for some vector ¢’ € H, ll¢'|| = 1, we shall define a subuni-
tary operation V§ on the subspace [¢']* = Iz —[e’]. Observe that for
a € [¢']* the vectors

1
a, =a+ ;—e', n=1,2,...,
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belong to X2, and, by (i), we have using (6)
|Usa, — Usa,l* = (a,—ay,,, a,—a,) -0 as n,m —~oo.
Thus there exists
(12) Véa = lim U%a,.
n~—»00
Condition (i) yields
(Vea, Vib) = Re(a, b)+ik.Im(a,d), a,bel[6']",

i.e. the operation V% is subunitary.
We claim that

cacn(fal), ael[e]*.

Indeed, if f, = Uia, and e, = a,/la,ll (n =1, 2,...), then (cf. (6))

2
Ifa —=([aDfall? = ' ,:6,.——(6—;";—]{:—)— Usa
— s, (62 @ _ (eny ) )_* N
hill (o,, lalF a,e, lalF a 0 as n—> oo.
Thus
(13) ;:a =£§fn =,ligl°u([a])fn € n([a]).

Let now ¢’ e. Put

1, , 1
a,,=o+;e and b,,=e+;e n=1,2...)

and let
J = l'f_?;Uib,. (fexn(leD, Ifl =1).

Thus we have f' = V°e’, i.e. f' e n([¢’]) and (|f']] = 1. We show that

.
f'G =f.
Since Uja, € %([a,]), IUsa,ll = |a,| and
(f', Uza,) =lim(U3b,,, Usa,) = lim(b,,, a,) = (¢, a,),
m—»00 m-—00
by (ii) we have Uia, = Uja,. Hence
Vie = lim Ula, = lim Uta, = f,
7n—00 n—>00
since
"U;an "—f" = "U;an_ ;6” = ||an—0“ =

<t 3|k

To complete the proof of (A) it suffices to take V = V5.
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Proof of (B). Making use of property (ii) of the function Uy we
obtain, for f+ = V+*e and f~ = Ve,

t+a = V*a and ta="Va

if ae HNZ,. Since dim H > 2, there are vectors a,, b, € H Z, such that
Im(a,, by) # 0 (e.g.,8o =¢+6', by =€+16',0 26 €H, 6 |eé).
Evidently,

(U;+ao’U;+bo) = (V*a,, V*+b,) = (@oy bo),
(U;-a'o’ ;-bo) = (V™ ae,V™by) = (by, ay),

and hence (cf. property (i)) ¥+ =1 and k- = —1. Thus the functions

%+ and Uj;- may be extended to unitary and anti-unitary operations V+
and V~, respectively, on H. It should be shown now that (8) and (9) hold,
i.e. that

V*ta, V-aexn(a]) (aeH).
If (a,€) # 0, then a’ = (a, ¢)"'a e X, and

V*a = (a, e)V*a’ = (a, ¢) Uj+a’ € n([a]),

V=a = (a, ) U;-a’ € n([a]).

Observe that V* = Vi+ and V™ = Vj- on [e]t (cf. (12)). Thus, if
(a, ) = 0, then, by (13),

V*a = Visa e n([a)), V a = Vi-a€=n([a)).

Proof of (0). Let V be a subunitary operation satisfying (10).
Again, making use of property (ii) one can show that

for a € 2, (f = Ve). Moreover, for a | e we obtain
. 1 ) 1
Va = hmV(a—{-—’;e) = lim U;(a—l— ;e) = Via,

1.e. the operator V is uniquely determined by the vector f on the subspace
[e]*. For any vector a ¢ [¢] we have

a =aet+pe’, a,feR,

where ¢’ ¢, |l¢'|| = 1; thus a € £,. Hence Va = Uia, where f' = Ve
= Vje¢'. Thus the operator V is uniquely determined by f on the whole
space H.
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Assume now that the operators V* and V~ satisfy (8) and (9). Let
€y, €3, ... be an orthonormal basis in H and let ¢, X, (: =1,2,...).
To show (10) it suffices to verify that V%e, | Ve, i.e. (cf. (14)) that

For 7 # j the orthogonality follows immediately from (8) and (9).
Observe also that, by (6) and (i), the function # — UZe, is a linear operation
on 7n([e]) which preserves norm, i.e. it is a unitary operation. Hence, if
fr1f-, then

Ug+6, 1 Uj-¢;,, 1 =1,2,...

Now we can achieve the proof of Proposition 4. Let f be a unit vector
in = ([e]) (llell = 1). Oonsider a vector ¢’ € H, ¢’ Le, ||¢'|| = 1. The opera-
tion V: [e']* - given in (A) may be either unitary or anti-unitary
or subunitary with constant k%, —1 < k < 1. Obviously, dim[e’}* > 2.
If the operation ¥ = ¥+ is unitary, then there exists, by (B), its unitary
extension V* satisfying (8), and thus case (a) holds.

Similarly, if ¥: [¢']* — o is an anti-unitary operation, then case (b)
holds. By (C), the operator ¥+ in case (a) and the operator V™ in case (b)
are uniquely determined by the vector f.

If the operation V defined in (A) is subunitary with constant k,
—1 < k < 1, then applying Proposition 1 we can write

V =aV++8V-,

where V+:[e’']t —a# and V~: [¢']* - are unitary and anti-unitary
operators, respectively, and a, § > 0. Moreover, by (3),

Vta, V-acn([a]), ac[e’]t, and V*elV-e.

Hence, by (B) and (C), case (¢) holds. Moreover, the subunitary
operation V = aV* 4+ BV~ satisfies (10) and, by (C), is uniquely deter-
mined by the vector Ve on the whole space H. Hence the vector f = aV+*e+-
-+ BV e determines uniquely (cf. Proposition 1) the operations V* and V~
on the whole space H.

From Proposition 4 we obtain immediately the following (cf. [2],
Proposition 5)

PRrOPOSITION 5. If for some non-zero projection P, € Sy the value of
the spectral measure n(P,) equals zero, then n(P) = 0 for any P € 8g.

Proof. Indeed, suppose that =(P) # 0 for some operator P e Sy.
Then n([e]) # 0 for some one-dimensional projection [e] (e € H, lle]] = 1).
Thus there is a vector f € n([e]), |[fll = 1, and hence there is at least one
unitary or anti-unitary operator V such that [V]< x and [V](P,) # 0,
which contradicts the assumption.
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3. We shall now prove the following

THEOREM 2. If n: S8y — 8, t8 a spectral measure (H and X are
separable complex Hilbert spaces) and dimH > 3, then

(15) x= D Vil+ D (Vi
i 7

where Vi, V}),...and Vi, V;,... are sequences (finite or not) of unitary
and anti-unitary operators, respectively, and all measures [VS] and [V;]
(¢,j =1,2,...) are mutually orthogonal.

Let us observe that, making use of the definition of the simple sum
of Hilbert spaces and that of the simple sum of operators, we then can
write (in case where the measure = is normed)

X = (X )D(@H]),
z(P) = (@VIP(VH)T)@(@ViP(V;)™Y), Pely,

where & and 5#;" are the images of the operations V;} and V;, respec-
tively. .

Proof of Theorem 2. Let =»: S5 —> S, be a spectral measure.
Consider a vector ¢ € H, |¢]| = 1. Let a sequence f;, f;3, ... (finite or not)
be an orthonormal basis in = ([e]). We find a sequence of mutually ortho-
gonal measures x,, 7., ... (finite or not) such that =, < =,

(16) fureeesFu€ D) mlle])

1=1

and for every n =1,2,... either m, = 0 or one of the following cases
holds (V;} stands for a unitary operation, ¥, — for an anti-unitary one):

(@) =, = [V: 1

(b) =, = [V;],

(c) 7y =[Va1+[V,], where [VIIL[V.].
- The existence of =, follows directly from Proposition 4 if we put
f =f g

Assume that there are measures =,,...,n, of the required form,
contained in = and satisfying (16). If f, ., exists and

fasr€ D, m(Lel),

f=1

then it suffices to put =,,, = 0. On the other hand, if

fasr 8D mille)),

=1
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then putting

J= llfn+l - ( 2“{) fn+1“—l (fn+l - (‘-Z?“i) fn+l)

in Proposition 4 and substituting = by the measure # — }'n, we obtain
a measure $=1

n
SR
f=1

of the required form and such that
n+l1

Fasr € D) m(le]).

f=1

Observe that = = D =;. Indeed,
[
D wi(led) = [fus fay ---1 = m([e]).
i

Thus (= —3'#;)([e]) = 0 and, by Proposition 5,
;
n— 2 = 0-
[§

After suitable renumerating of operations V} and V, (occurring
when n, # 0) we obtain formula (15).
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