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1. Let K be an algebraic number field and let g(a) denote the number
of distinct lengths of possible factorizations of an integer a of K into
irreducibles. We shall mostly be concerned with the value of g at positive
rational integers n and we shall prove the following result, answering
a question of P. Turin: )

THEOREM I. If the class-number h of K i8 equal atl least to 3, then g
has a non-decreasing normal order equal to Cloglogn, where C is a positive
constant depending on K.

Note that it was shown recently that the function f(n) giving the
number of distinct factorizations of a rational positive integer n into
irreducibles in K does not have a non-decreasing normal order except
the trivial case h =1 (see [5]).

In the course of proving Theorem I we shall obtain also the following
result:

THEOREM II. Let g*(a) and g~ (a) denote the maximal and minimal
lengths, respectively, of a factorization of a into irreducibles in K. The re-
strictions of g and g~ to positive rational integers have non-decreasing normal
orders equal to C*loglogn and C~loglogn, respectively, where 0 < 0~ < C*.
If, moreover, h = 3, then C~ < C*.

Some special cases of Theorem I were obtained earlier in [3]. Another
proof of Theorem I was also obtained by S. Allen and P. Pleasants and
will appear in Acta Arithmetica. In their paper they note also that the
constant 4, in our Theorem IIT may be taken equal to 1.

2. Let £ = Xy, X,,..., X; (" = h—1) be the classes of the class-
-group H (K) of K, E being the unit class. For any integer a of K denote
by 2;(a) the number of prime ideals from X; ocecurring in the factorization
of the ideal generated by a into prime ideals.



324 W. NARKIEWICZ AND J. SLIWA

LEMMA 1. Each of the functions 2;(n) (¢ =0,1,...,h') has a non-
-decreasing normal order equal to a;loglogn with positive a;.

Proof. Since £; is additive, non-negative and bounded on primes,
it has

D' 2(p)p™"  (p being primes)

p<n .

for normal order. But a recent result of Odoni [4] implies

2 Q;(p)p~" = (a;+0(1))loglogn.

p<n

For any integer a € K we define the type of a as the sequence

(82,(a), 2:(a), ..., 24(a))
and let
T, = gy Aaiy o vey Ap) (¢t=1,2,...,N)

be all the types corresponding to irreducible elements. We call two fac-
torizations of a into irreducibles, say

a = “17‘2 cee ﬂm bl bz cee br = 7317:2 ceon ﬂm 0102 coe 03

(where =,, @,, ..., %, are all irreducibles dividing a which generate prime
ideals), similar provided r = s and after some rearrangement the types
of b; and ¢; are the same for j =1,2,...,.

Observe now that for any a the classes of similar factorizations of a
are in one-to-one correspondence with non-negative integral solutions of
the system

N
(1) D wihs = 2(a)  (k=1,2,..., ).
i=1

In particular, if X' (a) denotes the set’ of all such solutions, then
g* (a), respectively g~ (@), are equal to the sum of 2,(a) and the maximum,
respectively the minimum, of the linear form

L(zyy gy eeey@y) =01 +23+ ... +2x

on X*(a), and g(a) equals the number of distinct values attained by
that form on X (a).

Let Xz(a) be the set of all real solutions of (1), X (a) the set of all
non-negative real solutions, and X (a) = Xg(a)nZ"¥. The set B = Xg(1)
is a linear subspace of R, X (1) is a lattice in B, X (a) is a coset of X (1),
and Xg(a) is the linear variety spanned by it. These observations imply
immediately the equalities
(2) max L = max L+ O(1)

X+(a) X;(a)
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and

(3) minZ = minL+ 0(1),
x 1) x3';,(0)

where the constants are independent of a.

LEMMA 2. To every mon-empty subset A of {1,2,..., N} and to each
t =1,2,...,h" there corresponds a real number c¢;(A) such that, with the
notation

"
M (a) = 2o(a)+ D) ei(4) 2(a),
=1
we have

gt(a) = max M ,(a)+0(1)
Ac{,2,...,N}
A#0

and

g (@) = min M, (a)+0(1).

Ac{1,2,...,N
s }

Proof. We consider only g*(a), the case of g~ (a) being analogous.
By (2) and (3) it suffices to evaluate max L. Since X% (a) is a polyhedron

X+t(a)
R
and L is linear, the maximal value is attained at a vertex, say P =
{Ugy Ugy ...y Uy . At least one of its coordinates vanishes and we may assume

that P has the maximal possible number of vanishing coordinates. Let
u; = 0 for 1 € A and u; # 0 for the remaining 4’s, where A is a subset of
{1,2,..., N} of k> 0 elements.

If the matrix

BA = (lij)i-m,...,h'
jed
had its rank equal at most to N —%k—1 and if

{17 2, sy N}\A = {jnjz’ ---:jN—k}r
then the system

N-k
2 1,-,8z3 = .Q,-(a) (’i =1,2,...,h')’ z’>0 (3 =1’2,”.,N_k)

8§=1

would define an at least one-dimensional polyhedron containing P. The
maximal values of L must be attained at a vertex which has at least
one vanishing coordinate, and so we get a point at which the maximal
value of L is attained and which has more vanishing coordinates than P,
in contradiction to the choice of P.
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Hence the rank of B , equals N —F%, and so we obtain, with suit-
a.ble ty; = t;(4), the equalities

Z ty Qu(a).

=1

K N
Ly, ey uy) = ( Yty) 2i(a),

i=1 j=1

Since

the lemma follows.

Proof of Theorem II. By Lemma 1, for every positive ¢ and almost
all » we have the inequalities

(a; — €)loglogn < £2,(n) < (a;+¢)loglogn (i =0,1,...,4),
whence, for those n and every non-empty 4 < {1, 2, ..., N},
(Zc (4)a;— D) loglogn < 20 (4) 2,(n) <(20 (4)a;+ D, ¢ loglogn
i=1 i=1
with certain positive D, and D, independent of ¢ and ». Putting now
Ot = a,+max ) ¢;(4)a 0~ =a,+min ) ¢(4)a;
.,+A¢gi=21f<)“ 0495-21“()
and adjusting the value of ¢ we infer from Lemma 2 that for almost all n
(C* —e)loglogn < g™ (n)+0(1) < (CT +¢)loglogn,
(C~ —¢)loglogn < g~ (n)+0(1) < (C™ +¢)loglogn
and it remains to show that €~ is positive. For this purpose observe that,

for irreducible =, 2 Q,(n) is bounded by a constant D mdependent of
7 and thus =0

g (n)= % g; 2;(n) > loglogn
for almost all n.
Finally, we show that, in the case h>3, C~ # O*. The equality
0~ = 0" would imply that, for all positive ¢ and almost all n,

g(n) < g*(n)—g~ (n)+1 < sloglogn,

but it was established in [2] that g(») < k implies 2,(n) < hk for a certain
¢> 0. Thus

1
g(n) > mm Q24(n)

and, therefore, g(n) > uloglogn (x > 0) holds for almost all » by Lemma 1.
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3. Theorem I will be deduced from Theorem II using the following
result:

THEOREM III. If h > 3, then there exist two constants A, and A, such
that for almost all n the set of all lengths of factorizations of n in K differs
from an arithmetic progression of difference i, by at most Ay elements.

Proof. Define m > 0 in Z by L(X(1)) = mZ and put

(The integer m is positive, for otherwise all factorizations of any integer
in K would be of the same length and we would have A < 2.)
For every real r choose a, € B with L(a,) = rm. Thus

X(1) = U (a+Co).

k=—o00

Now let %, = {uy, s, ..., uyy be a fixed element of X(a). Then

X(@) = Bt X(1) = U (@t +0Co)

k=—o0

and
L(X(a)) = {L(%,)+km: k€Z, (Ty+ a,+0p)nZY + O}
(ZY = {(Uuyy Ugy ..oy uyd: u; =0, u; € Z}).
Finally, for > 0 put .
RY = {QUyy Ugy eeeypyd: ;=08 (6 =1,2,...,N)}, ZY =RynZ",
X}4(a) = Xh(a)nRY, Xf(a) = X*(a)nZ].

LEMMA 3. There exists a positive number & = 8(Cy, X (1)) such that
if for some k € Z and z,, x, € X; (a) the inequalities

L(#,) < L(%g) + km < L ()

hold, then for a suitable x, € X+ (a) we have L(x;) = L(,)+ km.
Proof. Since X} ,(a) is convex, we can find y in it with

L(y) = km+ L(%,),

whence y € (%, + a,+C)nRy. But the set %,+a,+C is the linear span
of %,+a;,+0C,, and s0 we can find an element w, in #%,+4 a;+C, (thus
in X* (a)) at a bounded distance from y provided 4 was chosen sufficiently
large.

LeMMA 4. For every positive 8 we can find two positive constanis C,
and C; such that if Q;(a) > C, for ¢+ =1,2,..., k', then for each element
u € Xt (a) we can find a w' € X3 (a) with the distance from u less than C,.
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Proof. For a large C the condition 2,(a) > C (¢ =1, 2, ..., h’) ensures
that the set X; (@) is non-empty. As X (a) is a coset of the lattice X (1),
for every point of X* (1) there is a point of X (1) at a bounded distance
provided X (1) does not lie on one of the coordinate-hyperplanes. If this
happens, say {(z,,;,...,Zy> € X(1) implies 2, = 0, then the type =,
occurs the same number of times in every factorization of a given integer,
which is clearly a nonsense.

Proofof Theorem III. Let é beasin Lemma 3 and C, as in Lemma 4.
Let ,(a)>C, (¢ =1,2,...,h") and put

t, =min{t e Z: (¥,+a,+0)nZ) +# B},
t, =max{teZ: (¥,+a,+C)nZY +# 0}.

L]

Then, by Lemma 3,
L(X*(a)) = L(X; (a))VL(X*(a)\X{ (a))
= {L(@,)+km: t, < k< L}VL(X* (a)\X] (a))

and by Lemma 4 every value of L(X™ (a)\X/ (a)) is of the form L(%,) + km
with ke Z, t,—Cs < k < 1,4+ C; for some fixed C;.
Theorem I follows now directly from Theorems II and III.
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