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SEPARABLE VARIABLES ALGEBRAS
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S. FAJTLOWICZ, K. GLAZEK axp K. URBANIK (WROCLAW)

In this paper we adopt the definitions and notation given by Mar-
czewski in [2] and [3]. Let (4, F) be an algebra, i.e. a set A of elements
and a class F of fundamental operations consisting of A-valued functions
of several variables running over A. We denote by A the class of all
algebraic operations, i.e. the smallest class containing trivial operations

e Lyy Tgy ooy @) =a, (k=1,2,...,m3n=1,2,...)

and closed under the composition with the fundamental operations.
The subclass of all algebraic n-ary operations will be denoted by A®™
(n =1,2,...). Further, by A” we shall denote the set of values of all
constant algebraic operations. Elements of A® will be called algebraic
constants. 1f the class of algebraic operations on (A, F,) is contained in
the class of algebraic operations on (A4, F,), then we say that (4, F,)
is a reduct of (4, F,).

We say that (4, F) is an algebra with separable k variables (k > 1)
if for every pair f, ge A™ (n > k) there exist operations f,e A® and g,e A"
such that the equation

f(@yy @gy ...y @) = g(241, Ty ..., @)
is equivalent in 4 to the equation
Jo(@1y @ay ooy k) = Go(@rtry Bryay -y Tn).

Algebras with separable % variables for all ¥ =1,2,... will be
called briefly separable variables algebras. This concept was introduced
by Marczewski who investigated the exchange of independent sets in
separable variables algebras (see [1]).

Now we shall introduce for a time a notion of a quasi-linear algebra.
However, it will soon turn out that it coincides with that of a separable
variables algebra (Theorems 1 and 2).

An algebra (A, F) is said to be quasi-linear if the following condi-
tions hold:
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(i) the set A is a subset of an Abelian group @,
(ii) for any operation feA™ (n =1, 2,...) there exist unary opera-
tions f,, fsy ..., fn on A (not necessarilly algebraic) such that

J(@1y @ay ooy @) = Zfi(wi)y
j=1

where the summation is the group-operation in G,

(iii) there exists a one-to-one unary algebraic operation ¢ such that
the binary operation r(x,y) = q(x)—q(y) is algebraic.

Since, by (iii), r(z, ) = 0, the zero-element of @ is always an al-
gebraic constant in A.

Now we shall give some examples of quasi-linear algebras.

1. Let A be an Abelian group and F the class of all operations f

defined as
n

J(®1, oy oy @) = Zhj(mf)+a7
j=1

where n =1,2,..., aedA and h,, h,,..., h, are endomorphisms of A.
Each reduct of (A, F) containing a binary operation r(z,y) = v(z)—
—v(y), where v is an isomorphism from the group 4 onto its subgroup,
is a quasi-linear algebra.

2. Suppose that G is an Abelian group containing two different
but isomorphic proper subgroups G, and @, satisfying the condition
G, o G,. Let B be an arbitrary subset of G\ G, whose cardinal number
is not greater than that of G,\G,. Further, let ¢, be an isomorphism from
G, onto G, and ¢, a one-to-one mapping from B into G,\G,. Put A = BuG,,
q(x) = q(z) if 2@y, q(x) = ¢2(®) if zeB, and r(z,y) = q(z)—q(¥).
Taking into account the formulas ¢(4) = @, and ¢(g(=)—q(¥)) = ¢(q(x))—
—q(q(y)) one can prove that the algebra (A4, r) is quasi-linear. It should
be noted that the set A need not be a group.

The aim of the present paper is to prove the following theorems.

THEOREM 1. Quasi-linear algebras are separable variables algebras.

THEOREM 2. Algebras with separable k variables are quasi-linear.

It is easy to see that algebras with separable k41 variables are
algebras with separable %k variables. The converse implication is a con-
sequence of Theorems 1 and 2. Consequently, each algebra with separable
one variable is a separable variables algebra. It would be interesting
to find a direct proof of this statement. Further, we note that Theorem 2
can be regarded as a representation theorem for separable variables
algebras.
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THEOREM 3. Let (A, F) be an algebra with separable variables satisfying
one of the following conditions:

(*) A 18 finite,
(**) g(A) = A for each mon-constant unary algebraic operation g¢.

Then A is an Abelian group and each operation f algebraic in (A, F)
i8 of the form

where aeA® and h,, hy, ..., h, are endomorphisms of the group A.

THEOREM 4. If a semigroup 18 a separable variables algebra, then it
18 an Abelian group whose elements have the order bounded in common.

Before proving Theorem 1 we shall prove a simple lemma.
LEMMA 1. Let (A, F) be a quasi-linear algebra. If feA", geA™,

n

(@1, Bgy oevy @) = D gs(ay)

i=1

and b =g¢(0,0,...,0), then

fla@y, @oy ooy @) = D F(95(2)— 9;(0)+b) — (n—1)£ (D).
j=1

Proof. Setting

(1) f(g(wlymzy'“,wn)) =Zh:f(mi)’
=1
we have the formula
n
(2) f(6) = D 1y(0).
j=1
Consequently,

f(g(()’ 0,...,0,2;,0,..., 0)) = hﬂw,-)—h_;(O)-l-—f(b).

On the other hand, we have the formula

f(g(O, 0,...,0,2,0,..., O)) =f(g:i(w)—gf(0)+b)

which implies the equation

hy(@;) = f(95(2s) — 97(0) +b) —f(b) + 15 (0).

Hence and from (1) and (2) the assertion of the Lemma follows.

Proof of Theorem 1. Suppose that » >k >1 and f,geA™.
Let ¢ be the algebraic unary operation satisfying condition (iii) of the
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definition of quasi-linear algebras. Since the operation ¢ is one-to-one,
the equation

(3) fl@y, 2oy oovy @) = (@1, Tay onny Tp)
is equivalent to the equation
(4) qz(f(wly Loy eeey 'Un)) = qz(g(wu Loy eoey mn)):
where ¢2(x) = ¢(g(x)). Setting
f(@y, @y ooy @) = Zfi(w:i)y g(@yy Tay ovny ) = ng(wi)y
=1 i=1

we have, by Lemma 1, the equations

(3)  @(f@ ey @) = D) (fi(@) —F;(0)+a) — (n—1)g*(a),

(6)  q(g(@1, Tay ooy @) = ) ¢(95(2))— g;(0)+ b) — (n—1) g2(b),
j=1

where a = f(0,0,...,0) and b = ¢(0,0,...,0). Put

go(xk+l’ Liy2y ooy wn)
= T(Q(Q(O, 07"'7_07wk+17mk+27--°7wn))7Q(f(070"--’O’mk+1’$k+27---’mn)))y

where r(x,y) = q(x)— q(y). Obviously, the operations f, and g, are alge-
braic. Moreover, by Lemma 1, we have the equations

k
fo(@y, @0y ooy @) = D ¢2(fi(@) —£;(0) +a) — (k—1)g*(a) —

k
— D *(9:(@) — 9;(0)+ ) + (k—1) g2 (0),

n

00 (Ber1y Taray ooy @) = ) *(05(a7) — g;(0)+ B) — (n—k—2)g*(b) —
F=k+1
— ' (@) —£(0)+a)+ (n—k—2)g(a).
i=k+1

Hence and from (5) and’ (6) it follows that the equation

Jo(@1y oy oovy k) = Go@ki1y) Thgzy oy Tn)
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is equivalent to equation (4) and, consequently, to equation (3). Thus
(A4, F) is a separable variables algebra, which completes the proof.

Now we shall prove some Lemmas for algebras with separable one
variable. In all further considerations we shall assume that the algebra
in question is an algebra with separable one variable.

LEMMA 2. Let f,geA™ (n > 3). If the equation
(7) f(@yy @g5 o0y @) = g(@y,y @ay ...y @)

holds whenever r, = x, or x, = x,, then f = g.
Proof. Equation (7) is equivalent to the equation

Jo(@1) = go(@yy @3y ..y @),

where f,e A" and g,e A™~Y. Since (7) holds whenever x, = x, or ¥, = x,,
we infer that f,(x,) = go(@s, 23, ..., X)) = fol(xs) for all x,, x5, ..., eA.
Thus both operations f, and g, are constant and f, = g,. Consequently,
equation (7) holds for all «,, «,,..., z,€A, which completes the proof.

LEMMA 3. There exists a ternary algebraic operation s such that

(8) s(z,y,y) = sy, z,9) = q(x),
where q 18 a one-to-one operation having a fizved point in A,

Proof. The equation ¢ (x, y, 2) = ¢ (x, y, 2) is equivalent to the
equation f,(2) = go(z, y), where f,e A" and g,eA®. Since &) (z,x,2z) =
= ¢ (x, x, 2), we infer that f,(z) = g,(x, ). Thus f, is a constant oper-
ation. Denoting its value by ¢, we have g¢,(x,y) = ¢, if and only if
e (x,y,2) =ed(x,y,?), ie. v = y. Further, the equation

(9) 90(, y) = go(2, 1)
is equivalent to the equation
(10) f1(®) = g:1(y, 2, 1),

where f,eA" and g,eA®. Since (9) holds whenever x =z and y =1t
or x =y and z = ¢, we have the formulas

(11) fi(@) = g:.(y, 2, 9) = 9:(%, ¥, ).

Suppose that f,(a) = f,(b). Then, by (11), f,(b) = g:(a,y, y) which
is equivalent to the equation g,(b, a) = g,(v, ¥). Thus g,(b, a) = ¢, and,
consequently, a = b which shows that the operation f, is one-to-one.

Let ¢ be an element of 4. We shall prove that the unary operation
go(®, ¢) is one-to-one. Suppose that g,(a, c) = go(b, ¢). Then, by the
equivalence of (9) and (10), f,(a) = g,(c, b, ¢). Hence, by (11), f,(a) = f,(b)
which implies a = b, because the operation f, is one-to-one.
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Put ¢(x) = go(f1(w)’f1(co)) and s(z,y,2) = go(gl(wy Y, z)yfl(co))- Of
course, the operations ¢ and s are algebraic. Moreover, the operation g,
being a composition of one-to-one operations, is one-to-one too, and
9(¢) = go(f1(), f1(¢)) = ¢y, i.e. the algebraic constant c, is a fixed point
of ¢q. Finally, formula (11) implies (8) which completes the proof.

LEMMA 4. For each algebraic ternary operation s satisfying the con-
dition
(12) s(z,y,y) =s(y,»,y) = q(a)
the following equations are true:
(13) s(w,y,2) =s(y,=,?),
(14) q(f(@y, 2y ..., @)
=8(f (@1, B1y Ty Tay o ovy Ta)y F(Try Bay Byy Ty oeny Tn)y [(@1y Byy Tyy Bay ooy @)
for feA™ (n > 3),

(15) q(s(z, y,2) = s(g(x), ¢(¥), 4(2)),

(16) q(9(x, y)) = s(g(2, 9), g(®, 2), g(2, z)) for  geA®,
(17) s(s(z,9,1),4(2), ¢(t)) = s(q(x), s(y, 2, 1), ¢(1)),
(18) Q(s Ty,Y, ))—3(3 Z,Yyt),8 (tat’z)yq( ))

Proof. From (12) it follows that equation (13) holds whenever
2 = or z =y. Thus, by Lemma 2, it holds for all x, y, zeA. Further,
by (12), equation (14) holds whenever #, = =, or #, = x,. Consequently,
by Lemma 2, it holds for all x,, @, ..., z,c4 and fe A™ (n > 3). Setting
fl@y, 25y 3) = 8(x3, @5, @) into (14) and taking into account (12) we get
formula (15). Setting f(x,, x,, 5) = ¢g(x,, x;) into equation (14) we obtain
formula (16).

From (12) it follows that (17) holds if ¢ = y. Moreover, by (12) and
(15), it holds if ¢t = 2. Thus, by Lemma 2, equation (17) holds for all
r,Y,2,teA. .

According to (12), equation (18) holds if ¢ = 2. Moreover, by (12),
(13) and (14),

q(s(x,y,2) = q(s(y, =, 2) =s(s(y, ¥, 2), ¢(x), ¢(v))
—s(q 8(¥,9,2), 49 ?/))7

which shows that (18) holds if ¢ = y. Thus, by Lemma 2, equation (18)
holds for all »,y,2,teA which completes the proof of the Lemma.
In the sequel ¢" (n > 0) will denote the n-th composition of the unary
operation ¢, i.e. ¢’(x) = and ¢""'(z) = ¢q(¢"(#)) (» =0,1,...).
Let N be the set of all non-negative integers. We define a congruence
relation in the Cartesian product A XN as follows: <a, k) ~ <b,r) if
and only if ¢"~*(a) = ¢"~"(b) for all » > max(k,r), where ¢ is a one-
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to-one algebraic unary operation determined by Lemma 3. The equi-
valence class containing the element <{a, k> will be denoted by [a, k].
Let us denote by G the set of all equivalence classes [a, k] ({a, k>eA X N).
It is very easy to verify the equation

(19) [a, k] = [q(a), k+1].

Moreover, if a # b, then [a, k] and [b, k] are disjoint because the
operation ¢ is one-to-one. Consequently, we may identify the elements
a and [a, 0] (aeA), i.e. the set A can be regarded as a subset of the set G.
Further, by (19), each finite system of elements of G can be represented
in the form [a,, k], [a,, k], ..., [a,, k], where k is a sufficiently large
integer.

* LeMMA 5. If q(A) = A, then A = Q.

Proof. For any bedA and k > 1 there exists an element aeA such
that ¢*(a) = b. Thus, by (19),

[b, k] = [¢°(a), k] = [a, 0] = a,
which completes the proof. "

LEMMA 6. The set G is an Abelian group under the addition
(20) (e, K]+ [b, k] = [s(a, b, 0), k+1],
where the operation s is determined by Lemma 3 and 0 s a fixed point of q
in AY. Moreover,

(21) —[a, k] = [5(0,0, a), k+1].

Proof. First of all we shall prove that the definition (20) does not
depend upon the choice of the representation of elements of G. Suppose
that [a, k] = [¢,r] and [b, k] = [d, r]. Consequently, ¢" *(a) = ¢"~"(c)
and ¢"*(b) = ¢""(d) for n > max(k,r). Hence, by (15), we get the
equation

q(n+l)_(k+1)(s(a’a b, O)) = qn—k(s(a" b, O)) = s(qn_k(a’)a qn—k(b)a 0)
= s(qn_r(c)a q""(d), 0) = qn—r(s(c’ d, 0)) = q(n+1)—(r+1)(8(c, d, O))

Thus [s(a,b,0),k+1] = [8(c,d,0),r+1] which shows that the
definition (20) does not depend upon the choice of the representation
of elements of G.

From (13) the commutative law follows. Further, by (17) and (19),
we have the associative law: '

([d, k]+[b7 k])+ [07 k] = [8(&, b7 0)7 k+1]+[Q(G)’ k+1]
= [3(3(‘1" b, 0), q(c), O)’ k+2] = [8(Q(“)y s(b, ¢, 0), 0)7 k+2]
= [q(a), k+1]+[s(b, ¢, 0), k+1] = [a, k14 ([b, E]+ [c, k]).
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The element 0 of A is the zero-element of G. In fact, by (19),
0 = [0,0] = [¢°(0), k] = [0, k] and, consequently,

[a, ¥]1+0 = [a, K]+ [0, k] = [s(a, 0, 0), k+1] = [q(a), k+1] = [a, k].
Finally, from (18) for ¢t =y =0, =2 = a and (19) we get the
equation
[a, K]+ [s(0,0, a), k+1] = [q(a), k+1]+[8(0, 0, a), k+1]
= [s(q(a), (0,0, a), 0)7 k+2] = [8(a, 0,a), k+2] = [q(0), k+2)]
= [0,k+1] =0,
which implies (21). The Lemma is thus proved.
LEMMA 7. The ternary operation 8 satisfies the equation

$(x,y,2) = q(x)+q(y)—q(2)
for all x,y,zeA.
Proof. By (18) and (19) we have the equation

s(z,y,?)=1[s(®,y,2),0] = [Q(S(wy y7z))’ 1]
= [3(3("1"’:’/7 0),s(0,0,2), 0)7 1] = [s(x, y, 0), 0]+ [s(0, 0, 2),0].

Further, by (15) and (19),

[s(x,y,0),0] = IQ(S(“;, Y, O))’ 1] = [S(Q(w)’ q(¥), 0)’ 1] ‘
= [¢g(=), 0]+ [q(y), 0] = ¢q(x)+q(¥)
and, by (15), (19) and (21),

[s(0,0,2),0] = [9(3(07 O,Z)), 1] = [3(07 0, Q(z))y 1] = —[q(2), 0] = —q(2),

whence the assertion of the Lemma follows.
LeMMA 8. Each n-ary algebraic operation f is of the form

n

(22) F(@1, @y ooy @) = D fi(ay).

j=1
Proof. We shall prove the Lemma by induction with respect to n.
For n=1 it is obvious. Suppose that » > 2 and that for all (»n—1)-ary
algebraic operations the Lemma is true. Let feA™. By (14) and (16) for
2 = 0 we have the formula
Q(f(mly Loy eeoy w’n))

= 3(91(-'171’ Ty eees ®n)y Go L1y Loy o ooy Tn)y Ja(®1y Loy vy wn))r

where the algebraic operations g¢,, g, and g; depend on at most n—1



SEPARABLE VARIABLES ALGEBRAS 169

variables and, consequently, by the inductive assumption, are of the
form (22). Further, by Lemma 7,

Q(f(wn Loy ooy wn))
= Q(gl(wly Ty eoey a’n))+Q(gz(a717 Loy eeey mn))_Q(ga(wlr Loy eoey xn))

Consequently, by (19),

f(@yy Tay ooy @) = [f(®1y @2y ooy @), 0] = IQ(f(muwz, ---;-’If'n))’ 1]
= IQ(gl(m17 Ly eeey mn))’ 1]+[‘1(92("”17 Lgy ooy 4Un)), 1]—
— lalgs (@1, 2y ooy 20)), 1] = [92(®1, @2y -.., B), O]—i‘—
+[92(21y @ay v vy @n)y 01— [g3(@yy @2y ..y @0), 0]

= 1@y Doy ooey X))+ G2(@y1y Tay oo vy Tn) — 3 (@1, Tgy ..oy X)),

whence it follows that f is also of the form (22). The Lemma is thus proved.

Proof of Theorem 2. Let (A, F) be an algebra with separable &
variables and, consequently, with separable one variable. By Lemma 6
the set A is contained in the Abelian group G and, by Lemma 8, all
algebraic operations are of the form (22). The unary algebraic operation ¢
determined by Lemma 3 is one-to-one. Since 0¢A®, seA® and, by
Lemma 7, ¢(x)—q(y) = s(x,0,y), the binary operation g¢(x)—q(y)
is algebraic. Thus the algebra (A, F) is quasi-linear.

Proof of Theorem 3. If the set A is finite, then the one-to-one
algebraic unary operation ¢ determined by Lemma 3 maps 4 onto itself.
Consequently, in both cases (*) and (**) we have the equation ¢(4) = A.
Thus, by Lemmas 5 and 6, the set 4 is an Abelian group under the
addition (20). Let fe A™ (n > 1). By Theorem 2 the operation f is of the
form (22). Put a = f(0,0, ..., 0) and h;(x;) = f(0,0,...,0,2;,0,...,0)—
—a = fj(x;)—f;(0). Of course, ae A and

f(@yy @y oovy ) = Zhi(wf)+a-
j=1

To prove the Theorem it suffices to prove that h,, h,,..., h, are
endomorphisms of the group A. By Lemma 7 the binary operation
q(x)+q(y) = s(x, y, 0) is algebraic. Moreover, the operation h;(x)+ a is
also algebraic. Since, by Theorem 2, the algebra (4, F) is quasi-linear,
we have, according to Lemma 1, the equation

hi(a(@)+a@)+a = hilg(@)+hi(a(y)) +a

and, consequently, the equation

hilg(x)+q(y)) = hi{g(@)+ k(g (y))-
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Since ¢q(4) = A, the last formula implies the equation h;(z+y)
= h;(x)+ h;j(y) for all x,yeA. Thus h; are endomorphisms of A which
completes the proof.

Proof of Theorem 4. Suppose that (4,f), where f(z,y) = xy
denotes a semigroup multiplication, is a separable variables algebra.
By Theorem 2, (A, f) is a quasi-linear algebra. In particular, the set 4
is a subset of an Abelian group G and the zero-element 0 of G is an alge-
braic constant in A. Since each unary algebraic operation in (4, f) is
of the form z" (»n =1, 2, ...), we infer that there exists a positive integer
p such that

(23) 2 =0 (red).
The element 0 is an idempotent in the semigroup 4. In fact, by (23),
(24) 0® = (aP)® = (#*)? = 0.

Moreover, if ceA”, then 2™ = ¢ for a positive integer m and for
all zeA. In particular, 0 = 0™ = ¢. Thus 0 is the only algebraic constant
in 4.

Now we shall prove that

(25) xy = yw

for all x,yeA. Since A is a separable variables algebra, equation (25)
is equivalent to an equation

(26) a" =y,

where r and s are positive integers. Equation (25) holds, by (23), if y = 0.
Consequently, by (24), 4" = 0 for all xeA. Similarly we obtain the for-
mula y° = 0 for all yeA. Thus (26) and, consequently, (25) holds for
all x,yed.

Since 0 is the only algebraic constant and the semigroup A is com-
mutative, the operation xy can be written, in view of Theorem 2, in the
form

(27) xy = h(x)+h(y),

where h(0) = 0. Hence and from (23) we get the formula
(28) h(z) =20 = o' (wed),

which shows that the operation % is algebraic.

Let A, be the subalgebra of A generated by an arbitrary element
aeA, i.e. a subsemigroup generated by a. Of course, by (28), we have
the inclusion

(29) h(Adg) < A,.
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Moreover, by (23), the subsemigroup A4, is finite. Further, by (27),
we have the equation

(30) h(k(x)) = (#0)0 = #(00) = 20 = h(x).
Hence and from (27) if follows that
(31) 2" =nh(x) (n>=2).

By Theorem 2 there exists a one-to-one algebraic unary operation ¢
such that the binary operation ¢(x)— q(y) is also algebraic. Consequently,
q(0) = 0 and ¢(x)—q(y) = «"y°, where r and s are positive integers.
Thus, by (23), ¢q(z) =2'0 = 2'*? and, consequently, by (31), g(x)
= (r+p)h(x), because r+p > 2. Hence it follows that the operation h
is one-to-one which, by (29) and the finiteness of 4,, implies the equation
h(4,) = A,. This equation and (30) yield the formula A (x) = x for xeA4,
and, consequently, for all xeA. Thus, by (27), 2y = z+y. Moreover,
by (23), px = 0 for all xeA, which implies that A is a subgroup of the
group G and all elements of A have the order not greater than p. The
Theorem is thus proved.
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