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IN THE BANACH SPACE A4,
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1. Introduction. Let A4, (1 <p < o) be the Banach space of all
holomorphlc functions f(2) in the unit disc D = {2] |¢| <1} such that
[1f(2)|Pdu(z) < oo, with norm
D

s = F@PauE]

where u is the planar Lebesgue measure in D. It turns out that 4, is
a closed linear subspace of the Banach space L,(u) of the set of all equi-
valence classes of p-th-power integrable complex functions on D. The
usual Hardy spaces H, [3] are the Banach spaces of all elements of 4,
for which the norm

21

Ifl = sup{[@m)~ [ 1f(re)Pdg]"?l0 <7 < 1]

is finite. 4,, as a set is distinct of H,, i.e. for 1 < p < oo, the functions
in H, form a proper subset of 4,. This is easily seen by choosing, for
example, a suitable branch of the function (1—=2)~"?, which is in 4,
but not in H,,. Next, a sequence {z;} in a Banach space X is called a basis

for X if every # in X has the unique series expansion lim ) a;; with
n j<n
scalar coefficients a;, where the convergence is in the strong topology

of X. It is known that the sequence {z;} defined by
= ((j+1)/x)'*2!, 2eD, j =0,1,...,

forms an orthonormal basis for the Hilbert space A, and that the same
sequence constitutes a basis for H, (1 <p < oo) [3].

In this paper we state the result that {x;} is a basis for 4, (1 <p < o).
This gives an affirmative answer to the question, whether the Taylor
series expansion at z = 0 for each function f in 4, converges to f in the
topology of 4,,. However, it remains an open problem whether {z;} forms
a basis for 4,. Next, as in the case of the spaces C(8) and L,, it is possible



264 ' ' J. T. MARTI

to specify weak convergence and conditionally compact sets in 4,. Indeed,
necessary and sufficient conditions can be given for the weak convergence
of a sequence in A4, and also for the elements of conditionally compact
sets in 4, both relating the abstract concepts with the special form of the
elements as functions of the complex variable 2. Finally, it is shown that
the shift operator T in A,, as usual defined by (If)(z) = 2f(z), zeD,
has the following interesting spectral properties: The spectrum is D, the
point spectrum is empty, the residual spectrum is D and the continuous
spectrum is the unit circle.

2. A basis for the Banach space 4,. The proof that 4, (1 < p < o)
is a Banach space is, in principle, based on the following estimate. It is
easy to see that every f in A, satisfies the mean value equation

1
=— Adu(2), eD,
f(2) = 1f1_| If( )au(2), 2
from which one obtains
(1) f(&) < [m(1— 221" "?|Ifll, zeD.

We omit this proof, since it follows directly the lines of that for
the case p = 2 given in [2], where Holder’s inequality is used instead
of Schwarz’s.

The following lemma is substantial for proving the theorem on the
existence of the basis {z;} for 4,:

LEMMA 1. If 1 < p < oo, the sequence {x;} is total in A,.
Proof. If f is any element of A, with Taylor series ) a;2’ in D,
=0

we define the function f;, 0 <t <1, on D by f,(2) = f(t2), zeD. Since
the Taylor series for f(z) converges absolutely and uniformly for |2| < ¢,

the Taylor series ) a;t'2’ for f,(z) converges absolutely and uniformly
i=o

in D. Hence f; is an element of sp{;} in A, for each t¢(0,1). We show
that, given ¢ > 0, there exists a ¢ in (0, 1) for which ||f—f}|| < e.
Since felL,(u), there is a d¢(0, 4) such that

[ f@Pra@]r <es.

1-6<|z|<1

Taking r = 1— 6/2, we thus have

[ n@PauE]” =17 [ 1f@Praue]"” < 265

r<lz|<l tr<lzl<t
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for te(r,1). The uniform and absolute convergence of the Taylor series
for f(z) for |2| < r implies the existence of an integer n for which

D g (1—1)d | <n'lPef5,

j=n+1
|2| <r and te(r,1). Furthermore, there is a fixed ?e¢(r,1), depending
on n, such that

Dl (1—0)d| <aMPef5, |2 <7
f=0

Therefore, one has

if—f<| [ 1f@—f@Pau@]” +] [ 1f@Paue]" +

o<lzl<r r<izi<l

+] [ 1f@PauE]"”

r<lzi<1

<[ [ ]2 -(1—t")z7'\”d,u(z)]llp+

o<|zl<r 7=

+[ Y Y o (1= du(@)]" + e[5+2¢/5 < e,

o<jzl<r j= n+1

which is the desired result.

There is a more general concept than that of a basis [5]: A biortho-
gonal system {z;, #;} is called a Markusevid basis for X, if {z,} is total
in X and {z'} in X" is such that for every z¢X, «; (#) = 0, all j, implies
@ = 0. It is clear that the functionals «} e A}, defined by

= [f(2)a;(z) du(a),
D

are biorthogonal to the x;’s used in the above lemma. Also, #; (f) is pro-
portional to the j-th coefficient of the Taylor series for f at 2 = 0. From
this it follows that «; (f) =0, fed,, j =0,1,..., implies f = 0. Thus,
as an immediate consequence of Lemma 1, one obtdins

COROLLARY 2. If 1< p < oo, {w;} i8¢ a Markusevié§ basis for A,.

One of the most important theorems in the theory of bases is the
theorem of Grinblyum-Nikol’skii [6] which states that a sequence {x;}
in Xis a basis for sp{z;} if and only if there is a constant K >1 such

a |3 el < £, S o

7\n
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for every pair of integers m, n with m < n and any scalars a;. Now, using
the fact that for 1 < p < oo the trigonometrical system forms [7] a basis
for L,[0,2x=] and by a twofold application of the Grinblyum- Nikol’skif
theorem, it is possible to prove

THEOREM 3. If 1 <p < oo, the sequence {x;} is a basis for A, and
the associated biorthogonal set to {m;} is {w;}.

3. Compact sets and weak convergence in 4,,. It is of special interest
to investigate the conditionally compact sets in A4,; as has been done for
many other important spaces, such as C(S) (theorem of Arzela-Ascoli)
or L, (cf. [1]).

THEOREM 4. Let 1 <p < oco. A set K in A, is conditionally compact
if and only if

(i) K is bounded,

(ii) the functions in K are equicontinuous on each compact subset
of D and

(iii) im [ [f(2)[Pdu(2) = O uniformly for all f in K.

r—1 r<izl<l
Proof. Let § be any compact set in D and let 6 = 1—sup{|2| |z¢8}.
If K is conditionally compact, then K is bounded and for every & >0
there exist functions f,, ..., f, in K such that
inf ||[f—fll < (x6")Pe[3
<n
for each fin K (i.e. K is totally bounded). Then, by estimate (1) we have
on 8, |f(#)| < (=6*)~V?||f||. Given any 2, in § we can choose a neighborhood
N of 2z, in D such that
Sup|f;(2) —filzo)| < /3, zeN.
<n

Thus for feK and some ¢ <<n we have on Nn 8§

1f(2)—F(2o)l < |f(2)—Ff:(2)|+ 1F:(2)— F:(20)| 4 | £ (20) — f(20)]
< 2(n&) 7P| f—fill+¢/3 <e,

showing that the functions in K are equicontinuous on S.
In a similar manner we can prove the last statement of the theorem.
Let r <1 be such that sup ||x.fill < ¢/2, where y, is the characteristic

<n
function of the set {zeD] |2|] > r}. By Minkowski’s inequality one obtains
for some © << m,

2 fll < Ml (F =PI+ N fill < If—Fill+2/2 < 26
and so lim ||x.fl| = 0 uniformly for all f in K.

r—1

To prove the converse we assume (i), (ii) and (iii) to be true. Let
r <1. By (ii) the subset K, = {(1—y,)f|feK} of the Banach space



BASES IN THE SPACE 4, _ 267

C(D,), D, = {#zeD| 2| <7} (the norm in D, given by |gll. = sup{lg(2)||
zeD,}, geC(D,)) is equicontinuous and by (i),

sup {llglloe |9 € K} < [7(1—1)*1"sup {||f|l|fe K} < oo.

Thus the theorem of Arzela-Ascoli ([1], p. 266) applies and K, is
conditionally compact, hence totally bounded in C(D,). Therefore, given
e> 0, there exist functions f,, ..., f, in K such that

inf[j(1—2) (f=flo < 77"7e/3

for every feK. According to (iii) we now take r such that sup {|[y.f|||f<K}
< ¢/3 and have for every f in K and some ¢ < n,

If—=Ffill < Q=) (F—FI+ o (F=FI
< 7P (1= 2 ) (f—F )l 4-2¢/3 < e.

Consequently, K is totally bounded in A,. Since K is complete,
it follows that K is a conditionally compact subset of 4, (or equivalently,
since 4, is a metric space, K is sequentially compact).

In the case 1 < p < oo, 4, is reflexive and it is possible to charac-
terize weak convergence in A,. One observes that from estimate (1) it
immediately follows that for any fixed z in D, the functional ) on 4,
defined by =} (f) = f(2), feA,, belongs to A} so that the weak conver-
gence of a sequence {f,} in 4, implies simple convergence of f,(z) in D.

THEOREM 5. A sequence {f,} in A,, 1 <p < oo, converges weakly
to zero if and only if it is bounded and for each j > 0 the coefficient a,; of

the Tayior series ), am-z" for f,.(2) converges to zero with .
=0

Proof. If {f,} converges weakly to zero, {f,} must be bounded.
Moreever, since

oy = ((§+1) /=)' a5 (£,),

where {z}} is the biorthogonal sequence in A; which belongs to the basis
{r;} of Theorem 3, it follows that

lima,; = ((j+1)/=) limaj (f,) =0, j=0,1,...

This is the necessary condition.
Conversely, suppose that lima,; = 0 for all j. Since A4, is reflexive,

the basis {«;} for 4, has, by a known theorem of James ([4], p. 519), the
following property:
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For any z"eA, one has
limsup {|#* ()| @ €SP @y Tpy1s-- -}, 2]l =1} =0
m

(i.e. the basis is shrinking). Now, due to the principle of uniform boun-
dedness, there is a constant K >1 such that

sup sup {“ S‘w;" (w)m,-” ‘ [le|| < 1} <K.
m 7'__.m
Hence

m*(j’m;‘(m)m,.)] l(veAp, || < 1}

j=m

sup |

< sup “w*(w)[ legﬁ{"vm’ Lrm+19 vty 2l < -K} .
Thus

limsup{w*(z.o‘m;"(w)xj)’ lweAp, ]| < 1} =0
m j=m

and we have for every ¢ >0 an m such that

2*(fam D)7 (f)m)| < e/2,

j<m

sup
n

where without loss of generality one may take x* and all f,’s of norm one.
Because there is an n,, depending on m, for which

| S0 = | S0P aga] <2, 03 m,
J j<m

jsm

one gets

l* (f)] <

.’D*(fn—Zﬁr(fn)wy)"l‘HZﬁ;(fn)$,u <e, n=n,,

jsm

and the theorem follows.

4. The spectrum of the shift operator. Let T: 4, — A  be the linear
operator defined by (If)(z) = 2f(2), ze.D. It is immediate that T, usually
called shift operator, is bounded, with norm ||7']| < 1. Therefore the spectrum
o(T) of T must be contained in the closed unit dise D. If o,(T), o,(T) and
o.(7T) donote the point spectrum, residual spectrum and continuous
spectrum respectively, and if 4D denotes the unit circle D— D, we can
determine the partition of D into the mutually exclusive sets o,(T),
o,(T) and o.(T).

THEOREM 6. The shift operator T has the following spectral properties:

(i) o(T) = D,
(ii) o,(T) is empty,
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(ili) o,(T) =D

(iv) o.(T) = éD.

Proof. Assume AeD but A¢o(T). Then (AI—T)! would exist and
would be bounded in 4,. Thus (AI—T)"'f would be in 4, for any f in
A, which is a contradiction since (A—z)~'f(2) is not holomorphic in D.
This shows that D c o(T) and, since o(T) is closed, (i) follows. Next,
because (AI—-T)f =0, fed,, implies (A—=2)f(2) = 0 and thus f(z) = 0,
z # A, it is clear that o,(T) is empty.

To determine whether a point A of ¢(T) is in ¢,(T) or in o¢,(T), we
look at the range of the operator 2I — T. Let first 1 be in D. Suppose that
the range of AI—T is dense in A4,. Then, given f in 4, with f(1) # 0,
there would exist a sequence {g,} in A, such that lim(AI—T)g, = f.
But by estimate (1) this would imply that i

lim(A—2)g,(2) = f(2), zeD,

n

and hence that f(A) = 0 which is impossible. Thus D < ¢,(T). On the,
other hand, if A is of modulus 1, then the range of AI—T is dense in 4,
(it is always assumed that 1 < p < o0), i.e. for every fed, there exists
a sequence {g,} in A, with

lim|f—(AI—1T)g,| = 0.

Let {g,} be defined by
2) Z(z"/l"“), zeD.
i=0

Clearly, g,c4,. By

n 'n+

(A—2)gu(2) = F(2) [ Y (212 — (z/A] f() [1— (/2

j=0

it is apparent that
If—AI—T) gl = [ 1f @) P du()]™
D

<[ [ fera@” +] [ F@rae]”, o<r<i.

0<|2l<r r<izl<1

Given ¢ >0, it is now possible to choose r such that the last term
on the right-hand side of the above inequality is smaller than ¢/2. On
the other hand, the first term on the right is dominated by »"*!|f|| so

that ||[f—(AI—1T)g,l| < e for n large enough. Hence (AI—T)(4,) = A
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implying that 6D < ¢.(T). Since the sets o,(7) and o,(7) are disjoint,
one obtains the results (iii) and (iv).

COROLLARY 7. T s mot compact.

The result is an immediate consequence of the fact that the non-zero
points in the residual spectrum of a compact linear operator are isolated.
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