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Introduction. In this paper we consider a C*-manifold V of dimension
dimV = m > 3, equipped with a (1, 1)-tensor field #' and a linear connec-
tion V. Duggal [2] and Mishra [3] have introduced the following defi-
nitions: ‘

A. V is called an F-connection if VF = 0.

B. IV is called & semi-F-connection if divF = 0.

C. VV is called an M-connection if (VxF)(Y)+(VyF)(X) =0 for
any vector fields X and Y on V.

In Section 1 we introduce a mapping L which is defined by F and
by a mapping of the connection V' (cf. [1]). In Section 2 we give some
conditions equivalent to definitions A, B and C. In Section 3 we consider
the following question:

When does the Levi-Civitd connection on ¥ remain an F-connection,
semi-F-connection or an M-connection after a conformal change of Rie-
mannian metric?

1. Mapping L. Let K: TTV — TV be a mapping of the connection V.
Then

(1) VY = K(Y. X)
for any vector fields X and ¥ on V. We put
2) L = KoF,—FoK,

where F, denotes the differential of ¥: TV—>TV. Of course, L: TTV—
— TV, and if ae(TV)z, then L(a)e V,z for any ZeTV.
LEMmA 1.1. The equality

(3) " L(Ya X) = (VxF)(Y) = Vx(FY)—F(VxY)

holds for any vector fields X and Y on V.
This equality follows by the comparison of (1) and (2).
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Let z = (z', ..., 2™) be a coordinate system on V and put
y' =afon, Y™ =dz* for i=1,...,m.

Then the functions ¥, ..., ¥ form a coordinate system on TV. We
introduce the notation

0 0 .
Xi:aw,- and A,,='a—-yk for ¢ =1,...,mand k =1, ...,2m.

2m
For any a = ) a*A;,, where Z = 2'X,, () and peV, we obtain
K=
(4) K(a) = (a™ +Iyi(p)a/ ) Xy,
where Iy; = dw‘(ijX,,) (see [1], p. 76).
Writing fj = do*(F(X;)), we have

LEmMwMmA 1.2, If
2m
a = Zak.Aklz a’n/d Z = zi_X.m,,
k=1 :
then
(5) L(a) = a*2'Zy(p),
wkere
(6) Zy = (Xuff + AT — fiT) X;.

Proof. The statement follows by the standard computation of the
coordinate expression for K (formula (4)) and from the equality

Fo(a) = a* Ay + (zj & Xy + 11 (D)0 ) Ay gz

ProPOSITION 1.3. LIVTV = L|oTV =0, where vTV is the vertical
subbundle of TTV and
oTV = U (TV)OP.
PV
2. F-connections.

ProrosITION 2.1. V is an F-connection iff L|hTV = 0, where hTV
18 the set of horizontal vectors of TTV.

Proof. The statement follows from Lemma 1.1 and Proposition 1.3,
since the set of all vectors Y, X, where Y is a vector field on V and X TV,
contains the set of horizontal vectors.

If X is a vector field on V, then LX, is an endomorphism of TV,
and we can consider its trace.

(!) We use the Einstein summation convention only for indices which change
from 1 to m.
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ProPOSITION 2.2. V i3 a semi-F-connection iff trLX, = 0 for any
vector field X on V.

Proof. (divF)(X) =0 iff tr(Y s (VyF)(X)) = 0. But (V¢F)(X)
= (LX,)Y.

For an arbitrary vector field X on V, we denote by X° the complete
lift of X. X° is defined by the equalities

for any 1-form w on V (see [4], p. 496).
Lemma 2.3. If [X, Y] =0, then X°0Y = Y, X.

Proof. Obviously, n.(¥Y. X) = X. For any function fe C*(V), we
have

Y, X(df) = X<df| Y )
and
X0 Y (df) = (Lxdf| ¥y = Lx(df| Y ) —(df| LxY)> = Xdf| X,

gsince LxY = 0.
PROPOSITION 2.4. The following conditions are equivalent:
(i) V is an M-connection;

(ii) L(Ye X) = L(X,Y) for any vector fields X and Y on V;

(ili) L(X°0Y) = L(Y°0X) for any vector fields X and Y on V such
that [X, Y] = 0.

Proof. Lemma 1.1 shows that (i) <> (ii). The implication (ii) = (iii)
is a consequence of Lemma 2.3. Finally, if condition (iii) holds, then
vector fields Z,; defined by (6) satisfy the equalities Z,; = Z,, for any
k,1<m, since Z;; = L(4;0X;), 4, = X; and [X;, X;] = 0. Now for-
mula (5) shows that condition (ii) holds.

3. Conformal change of a Riemannian metric. Let us suppose that V
and ¥ are the Levi-Civitd connections of conformal equivalent Riemannian
tensors g and gon V. Put g = ¢’-g. Denoting by K and K the mappings
of connections V and l;, respectively, and putting

L =KoF,—FoK and L =KoF.—Fok,
we can immediately verify that
(1) (E—I)(a) = Pyly, FX) Y —(Vyl,, XYFY —(FX, T Vyl,+
+X, Yy FVy|,,

where ae (TV)x, #n(X) = p, me(a) = Y, Vyp denotes the gradient of v,
and X,, X,> = ¢(X,, X,) for any pair (X,, X,)e TVOTYV.
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ProposiTION 3.1. If L—L =0 and Vyl, # 0, then vectors Y and
FY are parallel for any vector Y ¢ V,, such that
(8) <Y’ V’/’Ip> =<Y7FV'/’|1)> = 0.

Proof. Taking an arbitrary vector be TTV such that =, (b) = Vyl,
and =, (b) = Y, we infer from (7) that

0 = (L—L)(b) = <Pply, FVplp> Y~ |Vy ! FY.

We say that F satisfies condition (%) if vectors X and F'X are linearly
independent for any X # 0. For instance, almost complex structures
satisfy ().

CoroLLARY 3.2. If V is an F-connection and F satisfies (x), then %
18 an F-connection iff y = const.

Using formula (7), we obtain

(9) Z&(X,Y)Z(L—L)(X.Y)—(L—L)(¥u X)

=(FX, Vp)Y —(FY, Vy)X <X, Vy)>FY +
Y, V) FX - ((FX, Y)—<X, FY))Py
for any vector fields X and Y on V.

ProposITION 3.3. If £ = 0 and Vy|, # 0, then, for any Y satisfying
equalities (8), vectors Y and FY are parallel.

The proof follows by putting X = Py in (9).

COROLLARY 3.4. If V is an M-connection and F satisfies (*), then v is
an M-connection iff v = const.

For any vector field X on ¥V, we have
tr (L—L)oXy = m(FX, V> —trF(X, Vyp>—(FX, Pp> (X, FVyp>.
In particular, >
tr (L—L)o Vy, = m{Vy, FVyp>—trF |Vl

This proves the following
ProprosIiTioN 3.5. If tr(L—L)o(Vy)e =0, then

1
Py, BVy) = — tr B |yl

We say that a pair (¥, g) satisfies condition (x+) if, for any Xe TV,
vectors X and FX are g-orthogonal. Of course, in this case F satisfies
condition (*). For instance, if F is an almost complex structure on ¥V and
g is a Hermitian metric, then (F, g) satisfies (**).

COROLLARY 3.6. If V is a semi-F.conmection, (F,g) satisfies (**)
and trF +# 0, then V is a semi-F-connection iff v = const.
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