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0. Introduction. In [2] Sikorski generalized the notion of differen-
tiable manifold by introducing the notion of differential space. The set
of all tangent vectors and the set of all covectors tangent to a given dif-
ferential space M can be endowed with natural differential structures to
form the differential space tangent to M and the differential space co-
tangent to M, respectively (see [1]). In the present paper the differential
space *TM of all regular tangent covectors and, moreover, regular differ-
ential forms on M are defined and studied. Some relations between *TM
and the above-mentioned differential spaces are also given.

The “regular” notions coincide with the classical ones if considered
on a differentiable manifold, and they are surprisingly more intuitive and
clear in the case of a general differential space.

Throughout the paper we fix a differential space

M = (setM, F(M)),
where & (M) denotes the differential structure of M, and set M its support.

1. Tangent vectors and regular tangent covectors. We recall the
notion of tangent vectors.

The standard equivalence relaticn on & (M) x set M gives rise to the
space G (M) of all germs of furctions from &% (M). Now, we fix an arbitrary
point p of M and denote by G,(M, p) the ideal of all germs at p whose
values are zero. The quotient algebra G,(M, p)/G.(M, p)? is a real
vector space and the tangent space T, M is its dual:

T, M = [Go(M, p)/Ge(M, p)°T".

Since the vector space TRM of all tangent covectors at p is dual
to T,M, there is a natural injection i, of G,(M, p)/Go(M, p)* into its
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second dual:
(1) iyt Go(M, p)[Go(M, ) = Ty M, (i,(w))(v) = v(w)

for p e set M.

Definition 1.1. The vector space *T,M of regular covectors tangent
to M at a point p of M is the image of 7,:

*TpM :=im(s,) Ty M.

Obviously, *T,M = T, M if and only if dim7T,M < o.
For any function a € # (M) and a point p of M, we define the dif-
ferential da, € *T,M by the formula

da, = .p([a_a(p)’ p1+Go (M, p)z)’

where [a—a(p), p] denotes the equivalence class (the germ) of the pair
(a—a(p), p) € F (M) x set M. We see that

(2) *T,M = {da,: a € F(M)}.

Remark 1.1. There is a slight difference between T,,M and the
space M, defined in [2]. For any p € set M these two spaces are naturally
isomorphic. However, the vector spaces T, M are always mutually disjoint.
Under the dual isomorphism TpM =~ (M,)*, the covectors da, correspond
to the appropriate values of the standard differential.

We denote the union of all *T, M, p € setM, by set*TM.
2. The differential space *TM. For a set A, let
R™:= {ce R4: ¢ = 0 outside a finite subset of A}.

We denote by @ == &,, the mapping

(3) R¥OD x set M5 (¢, p) = D cuda, € set*T M.
aeF (M)

Now we are able to transfer an appropriate differential structure
from RY¥M)! x set M onto set*T M.

For any finite B ¢ # (M), there is a standard product differential
structure & (RZ x M) = C°(R®) x# (M) on RE xsetM. There is also
a canonical injection RE —, R¥®™) which maps functions R— B to
their zero-extensions onto the whole set &F (M).

Definition 2.1. Thé differential space *TM of all regular covectors
tangent to M is the pair (set*TM, #(*TM)), where

(4) F(*TM) = {£ e R**"TM; for any finite B c # (M)
there is &0 @|RE x set M € # (R? x M)}.
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Now, we list some special mappings related to the space *TM.

(a) The sets *T, M, p csetM, are mutually disjoint and, therefore,
the projection *n: set*TM —setM, *m(da,) =p for p esetM, is well
defined.

(b) For smooth functions a,, ..., ay, By, ..., B € F (M), where k is
any positive integer, the differential gives rise to the mapping

Zﬂida‘.: setM — set*TM

i<k
defined by
(3 8da) (@) = D) Bi(p)da,, for pesetM.

i<k i<k

THEOREM 2.1. The mappings defined in (a) and (b) determine smooth
functions

*n: *TM —>M and D Bda;: M —*TM,
i<k
respectively.
Proof. (a) For any finite B « & (M), the composition

*20 ®|RE x set M: RE x set M — set M
is the projection onto the second factor and, therefore, it determines a
smooth function.
(b) Suppose that a;, ;€ F(M) for ¢ =1,...,k. We may assume
that a; # a; for ¢ # j and then define a mapping
y: set M — R x set M
by putting

¥D) = (Bi(B) .-y BuD); B) = (n(P), P
where n(p)(a;) = Bi(p), ¢ =1,..., k
for p e set M. We have

D Bida; = (DR X set M) oy.
i<k
Since y determines a smooth mapping, so does > f;da;.
i<k
THEOREM 2.2. If M i3 a differentiable manifold, then the identity
mapping j: set*TM — set T*M yields the diffeomorphism of *TM and the
total space T*M of the cotangent bundle.

Proof. Since all the tangent spaces are finite dimensional; set*TM
= setT"M (i, is onto for all p). Let » denote dimM.
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(i) Smoothness of j. Take an arbitrary function & e #(T*M) and
choose a chart # = (2°),, on an open subset U of M. Then there exists
an associated chart & on n*~!(U), n* being the natural projection T*M — M,
such that

w = 25}”+"(w)dwf,.(,,,) and & =alon®
i<n
for j < m, o e a* (D).
Let B be any finite subset of & (M). For some smooth functions
ys: U—>R, feB and ¢ =1,...,n, we obtain

BT = )'ypda’ for peB

i<n

and, therefore, we have successively

(E0jo O|RE x U)(c, p) = f(g cﬁdﬂp) = 5(2(2%?&(1’)) da:;)

i<n feB

= (£o77Y) (w(p), (2 prﬁi(l’));sn)’

BeB

Thus the function &ojo ®@|RE x setM is smooth, as the open sets
RB x Domain (), x € Atlas(M), cover R® x set M for an arbitrary finite
subset B of % (M). Consequently, the function £oj is smooth for any
Ee F(T*M), and so is j.

(ii) Smoothness of j~!. Take an arbitrary function % e £ (*TM)
and choose a chart z € (2°) on some U c setM such that z° = o'|U for
some function o' € #(M), i = 1, ..., n. Such charts will be called admissible.
We denote the set {al,..., a"} by A.

Consider the diagram

axidg

R"x U > R4 x Ucs RFM! xget M

RS 4

Y

A N(U) <  setT*M s set*TM

where the diffeomorphisms v and a are defined by
p(e,p) =& '(x(p),¢) and a(e)(d’) =¢ (4 =1,...,n),
respectively. Since the diagram commutes, we have
10j|a*"(U) = (no O|R4 x U)o(axidy)oy?,

which proves the smoothness of noj~', as the do_mainé of the admissible

charts cover M. Consequently, j~! is:also smooth.
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3. Regular differential forms and smooth vector fields. We recall
that the differential structure of the tangent differential space T'M is
generated by the set

(5) {aonm: a e F(M)}V{da: a € F (M)}

(cf. [1]), where n: TM — M is the projection.

Remark 3.1. For a € #(M) we shall use the symbol da in two dif-
ferent meanings corresponding to each other. The mapping da: M —*TM
(cf. Theorem 2.1) gives rise to a function

da: setTM - R
which is defined by

da(v) = da,,(v) = 'v([a—a(vz('v )), (V)] +Go( M, =(v)) )

for v e setT M. Note that da: TM — R is linear on each T, M, p € set M.

Definition 3.1. A regular differential form (1-form) on M is a function
w € F(T'M) such that, for any p esetM, its restriction w,:= o|T,M
is linear.

For more general definitions see [1]-[3].

Definition 3.2. A (smooth) vector field X on M is a smooth mapping
X: M —TM such that mo X = idy,.

This definition is a reformulation of the classical one.
For p eset M, we shall write X, instead of X (p).

THEOREM 3.1. Any vector field X on M defines a function X € # (*TM)
that coincides with X 04" on each *T, M, p €setM.

Conversely, any element of F (*TM ) which is linear on each *T, M,
p eset M, is of the form X for some vector field X on M.

Proof. If X: M —TM is a vector field and B is a finite subset
of # (M), then X: set*TM — R is defined uniquely and

(X o ®|RE x set M) (c, p) = (Xo1,’ (Zcﬂdﬂp) —Zcﬂ(dﬁox

which proves that X o ®|RE x set M € # (RF x M), as X is smooth. Thus
X e F(*TM).
Now, let Z e # (*TM) be linear on each *T, M, p e setM. Put

Y, = (Z'T,M)oi, for pesetM
to obtain a mapping

Y = (setM>p > Y, eset TM)
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such that mo Y = idg,, - In order to complete the proof it is now suffi-
cient to show the smoothness of Y. This is evident since

(aom)oY =a and (da)oY = (Zo DR xsetM)(1, )

for a € F(M).
It is natural to ask whether a similar theorem holds for regular

differential forms. The problem is that a regular differential form deter-
mines covectors in setT*M which, generally, is larger than set*TM.
However, we shall prove that all the covectors determined by a regular
differential form are in fact regular.

THEOREM 3.2. Let w € F(T'M) be a regular differential form on M.
Then any point p of M has a meighbourhood U such that

o =D (fom)de; on x7'(T)
i<k

for some a;, ;e F(M), i =1,...,k, where k is an appropriate integer.

Proof. Fix an arbitrary point p of M. For ¢q esetM, denote the
zero-vector of T, M by o,. Since o belongs to the differential structure
generated by the set (5), there exist a neighbourhood V of o, in TM and
some functions a,,..., a,, ¥1y..., 7, € F(M) and ¢ € C°(R**') (k,1 are
positive integers) such that

(6) w = p(day, ..., dag, 1,07, ..., y0m) on V.
We may take V from an appropriate base of the topology of TM
and assume that
V= m(dla)_l (Ia)ng(”bon)—l(']b))
€.

acAd
where 2,, %, € #(M) and I,,J, are open subsets of R for ac 4, b € B,
A and B being finite sets of indices. Since 0, € V, all I,, a € A, are neigh-
bourhoods of 0 € R. We put
U= (%"(Js)

beB
to have o, € V for ¢ € U. We shall show that

0 = 2(})“(0, vees 0y 915 oy M)om-da; on a'(U),

i<k
where |¢ denotes the appropriate partial derivative.
Let g € U. The linear subspace of *T,M spanned by all da,, i< k,
has a finite basis »,, ..., 7, and

— h

h<r

for some real ¢}, h<r and i < k.
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Choose vy, ...,v, € T,M such that v,(v,) = d, for h,g<<r (&, is
the Kronecker symbol) and put

w(t) = Zt,;v,, for ¢t = (ty)h<r € R'.
h<r

We have

daw(t)) = Zc?t,, for i =1,...,k%.
h<r

Since di,, a € A, are linear, there exists a real ¢ # 0 such that

'(7) G'Dh e V
for all A< r.
We put

W = (R’a tes( 3 tudha(on) ., € R“)—I (X 1,).

h<r

Then W is an open neighbourhood of 0 € R" and
(8) w(t)eV forteW.
By (6)-(8) and by linearity of w, we obtain

w('w(t)) = Q(Zc’llth’ ---72°2th’ V(Q))
h<r

h<r

and, cn the cther hand,

ww(t) = e Y ho(er,) =7 Y tg(de, ..., de, y1a))

h<r h<r

for ¢t € W, where y(q) = (y1(q), ..., %:(g)). Consequently, we have

(9) <P(20'ftm ceey 2"2% V(Q)) = 8—12%?’(0{‘8; ooy CiE, ?(9))
h<r

h<r h<r

for t € W. Differentiating identity (9) and putting ¢ = 0 we get

(10) 3_1‘7’(0’1‘3’ Y 0237 '}’(Q)) = Zciil?’li(or .0y 0, V(Q))
i<k
for h = 1,...,r. Identities (9) and (10) give
(11) w(w(t)) = th“(o, eeey 0, y(q))da,- ('w(t))
i<k

for te W.

8 — Colloquium Mathematicum XLVI.2
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Now, let v be any vector in T,M. We have

(12) do;(v) = D el (v) = dayfw(t,))
h<r
for ¢ =1,..., % t, = (v,(v))s<,. We choose a non-zero € R so that

oveV and d6t, e W.
According to (11) and (12) we get

0(v) = 67w (6v) = 6~ p(da,(6v), ..., day(80), y(q))
= 67 "p(day(w(3t,)), ..., day(w(dt,)), (q)) = 67 w(w(t,))
= 6—12%{(0’ .y 0, 7(4))dai(w('6tv)) = 2%.‘(0’ .0y 0, 7(9))‘1‘1{(”)'

i<k i<k

We have shown that, for any v e n~!(U),

o(0) = D (0, ..., 0, (yom)(v))day(v),
i<k
which completes the proof of the theorem.
CorROLLARY 3.1. A regular differential form o e F(TM) determines
a smooth mapping &: M —*TM such that *mod = id, and &(p) = w,
for p esetM.
Proof. As shown above, @ coincides locally with a smooth mapping

of the form )’ f,da;, and so it is smooth (cf. Theorem 2.1 (b)).
i<k
It is interesting that some smooth mappings v: M —*TM, with
mov = idy, cannot be obtained from any regular differential form on M.

Example 3.1. Put
setM = {(', ) e R*: 1 = 0}, M = (setM, C™(R®)yeqyy)-

(We have localized the differential structure of R? to setM.)

It is easy to check that, when defining the differential structure of
*T M (as in Definition 2.1), we may restrict ourselves to the subset of # (M)
consisting only of all coordinate functions. This means that, for a function
&: setM — R, we have

£ e F(*TM) if and only if fop e F(R? X M),
where ¢: R*x M — *TM is defined by
@(C1y Coy P) = 01d$::+02dw§n

and o* = (setM > (', ¢*) »t' € R), i =1,2. Moreover, &ogpec F(R®xM)
if and only if there exists p € C°(R? x R?) such that

Eop = y|R* xset M
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(see [3]). Consequently, we have
p(ey) Csy t,0) = 5(01dw(ltl,o)+czd-’”ftl,o)) = 5(01da7(1t1,0)) = y(¢, 0,1, 0)
for t' # 0, and
p(e, €2,y 0, %) = E(cld"’zo,tz)‘l"’zdw(zo,tz)) = 5(02‘;“7?0,:2)) = 9(0, ¢,, 0, %)
for t* # 0, where ¢, and ¢, are real numbers.
By continuity of y we get
w(eyy €3, 0,0) = 9(0,0,0,0) for all ¢;,c,

and, therefore, £ is constant on *T, , M if it is smooth. Hence the value
of a smooth mapping v: M — *TM, with *zov = id,, at the point (0, 0)
of M is quite arbitrary — it is not determined by the values of » in any
neighbourhood of (0, 0).

On the other hand, Theorem 3.2 states that a regular differential
form w on M determines the mapping @: M — *TM which is, on a neigh-
bourhood of (0,0), of the shape pg,dx'+ f,dxz* for some B, f, € F(M).
Consequently, we have

o)
(,0)

A0, 0) = tima{t, 0)( o5

and
0

iz (O.t))

B.((0, 0)) = 1ima((0, t))(__
t—0 3

Thus &((0, 0)) is uniquely determined by other values of .
For example, the mapping »: setM — set*TM defined by

_{da;}, for p # (0, 0),
‘Vp— _
ds; for p = (0, 0)

satisfies the condition *moy = iy, determines a smooth mapping
v: M —*TM, and cannot be obtained from any regular differential form
on M.

Remark 3.2. For a given smooth mapping »: M —*TM with
*noy = id,, (even such as in the example above) and a smooth vector
field X on M, the evaluation (v,Xzz M — R, p —v,(X,), is smooth
since it is equal to the composition Xo.

4. More about the differential structure of *7' M. Consider an arbitrary
but fixed & e #(*TM). Take any p € set M.
Each pair (w, ») of covectors in *TPM determines a curve

(13) R>t— wttveset*TM.
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If o =da,, v =4, (e, eF(M)), then the curve admits a lift
Rot>(1,1;p) € R™? xget M =, RF®D! x get M

(adding an appropriate constant, if necessary, we may assume that a # f).
Consequently, the curve (13) is smooth and we put

(14) adé(v; w): = — fw+t),

which is the value of d¢ on the vector tangent to the curve at w.
LEMMA 4.1. The function d&(-;w): *T,M — R is linear for amy
wE ‘TpM .
Proof. Fix an arbitrary o in *T,M. The condition

adé(tv; w) = tdé(v; w)

for t € R, v € *T, M, is obvious. It is sufficient to prove only the additivity.
Let »* = dp} (p*e F(M)), © =1, 2, be any two covectors in *T, M. As
before, w = da, for some a € #(M) and we may assume that a, g, f*
are different from each other. We have

(£0 @ (R x {p})) (1,1, ¢, P)

0

a
aé(»t+1?; w) = m

d
Wl t?) = —
o£(w+v+V) T

a a
=— (50 @I(R{a.ﬁl,ﬁz} X {p}))(l,t, 0, p) +E‘ (Eo (D](R{a,ﬁl,ﬁz}x {_p}))(l,O,t,p)
0 0
=— /E(fl)-l-?h’l)—l--i E(w+t?) = dE(V'; w) +dE(r?; ).
at |, at |,

The lemma implies that d&(-; w)oi, is a vector.
Definition 4.1. A tangent mapping of & e F (*TM),

TE: set*TM —»setTM, noTE ="*n,

is defined by
Té(w) = GE(*5 @) Otun(a)-

THEOREM 4.1. The tangent mapping TE defines a smooth mapping
TE: *TM —TM for any & € F(*TM).

Proof. Choose an arbitrary but fixed &e #(*TM) and take any
a€F(M).

(i) (aom)oTé = ao*n and is smooth.

(ii) Let B be any finite subset of # (M). Attaching a, if necessary, we
may assume that a € B. We show the smoothness of dao T&0 @|(RZ x set M).
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We have

(dao T&o ®|(R® x set M))(c, p) = —%

05( D opdf,+ tdap)

peB

='%' (60 PI(R? x 86t M) ((c5+t8pa)pers P) = (§0 PI(RE x set M) a(c, P),

where dg, is the Kronecker symbol. Thus the function
dao Téo D|(R® x set M) = (&0 D|(RE x set M)),,

is smooth and daoT& € # (*TM).
According to (i) and (ii);we conclude that T¢ is smooth.

COROLLARY 4.1. For any point p of M, a vector v e T, M gives rise
to a smooth function voiz' on (*T,M, F (*TM Yo M) if and only if there
18 a smooth vector field X on M such that X, =

Proof. The “if” part is obvious by Theorem 3.1.

The “only if” part. Fix an arbitrary point p of M and assume that
voi,' e F ("‘TM).TpM for some v e T,M. Then there exists a smooth
function & € #(*T M) that coincides with voi,' on a neighbourhood V
of o,e*T, M, o: M —*TM being the zero-mapping. We claim that
v = T'&(0p).

For » € *T, M, the curve R>t >t € *T, M is smooth and, therefore,
its values are in V for |t| sufficiently small. Thus we get

T&(o,)(i5%) = @& (v; 0,) =di E(ty) =

7, @, (voig")(tv) = v(i;")

for v e *T M. Consequently, the vector v extends to the smooth vector
field T Eoo

THEOREM 4.2. For any point p of M, if Aim*T, M < oo (equivalently,
dimT,M < oo), then the differential structure & (*T M) coincides on ‘.M
with the differential structure generated by all smooth vector fields on M
In other words, ¥ (*TM Jer,n 18 gemerated by the set

{X|*T,M: X is a smooth vector field on M}.

Proof. Assume that dim7T, M = n < oo for some p eset M. Let m
denote the dimension of the subspace of all vectors in T, M which extend
to smooth vector fields. Take vector fields X,, ..., X,, on M so that the
vectors X,,, h <m, are independent. Now, choose functions a?,..., a"
in # (M) such that (daf),, is a basis in *T,M and dd}(X,,) = & for
1<n h<m. ' Iy
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We denote the mapping
R's ¢ 2 ¢da} € *T, M

i<n

by ¥. It corresponds (in some sense) to ®|R 1} x {p} and, therefore,
is smooth.

Let us consider an arbitrary function ge #(*TM ).TpM. We have
po ¥ e C*(R"). Moreover, for any w € *T, M there is a function & € # (*T M)
which coincides with 8 on a neighbourhood of w in *7,M. All the values
of T¢ on *T,M belong to the linear subspace of T,M spanned by X,,,
h=1,...,m (cf. Theorem 4.1). Thus the covectors dal, m+1<i< m,
vanish on all those subspaces. Consequently, since the formula

da,oTéo ¥ = (6o W),; = (Bo¥P), fori<mn

holds in some neighbourhood V of ¥~'(w) e R (see the proof of Theo-
rem 4.1), we get

(15) (BOP)myr = - = (BO¥),, = O

on V. Since w is arbitrary, equalities (15) hold everywhere on R" and,
therefore,

(BoP)(c) = (BoW)(C1y +vss L 0,...,0) for all ce R".
Thus, we have
B(w) = (Bo¥) (X1 (@), ..., Xpp(®),0,...,0) for we*T M.

This completes the proof.

Remark 4.1. The set of all X, with X being a smooth vector field
on M, and of all aon*, a € #(M), generates a differential structure
F(T*M) on

setT"M = JT, M
p
(cf. [1]). As set*TM < set T*M, one can ask whether (or when) *TM is
a differential subspace of T* M. Do these two differential structures coincide

in the case of Z,-spaces (cf. [3])? (P 1261) The author does not know the
answers.
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