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1. Introduction. In [3], completeness with respect to the Carathéo-
dory metric is discussed. However, in the case of the unit dise, for example,
where the Carathéodory metric is known explicitly, we obtain the same
metric if

1+[f(@), f(y)]
1—[f(=), fy)1’

where f is an analytic function which can be approximated uniformly by
rational functions whose poles lie off the closed unit disc and which map
to the unit disc; here,

1
(%) d,(x,y) = sup glog
!

|a —b|
1—Bal

In this paper* we consider a metric on X defined in terms of the
functions which are uniformly approximable by rational functions whose
poles lie off the closure of X. We determine necessary and sufficient con-
ditions for completeness of this metric and we investigate how completeness
with respect to the Carathéodory metric is related to completeness with
respect to the new metric.

2. Definitions and preliminaries. Let X be a bounded region in the
plane with int X = X. Let R(X) denote the Banach space of analytic
functions which can be approximated uniformly by rational functions
whose poles lie off X. For fe R(X), |fll <1, where [fll = Max|f(x)
with 2 € X, we define d, by («). It is easily shown that d, is a metric which
yields the same relative topology on X as the ordinary metric.

Endowed with the usual pointwise operations, R(X) is a Banach
algebra with unit. If M is the maximal ideal space of non-trivial complex
homomorphisms of R(X), then R(X) is isometrically isomorphic to a closed
subalgebra of C(M), the complex-valued continuous functions of M.

[a, b] =

* This was supported in part by N.R.C. Grant A8088.
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In this case, it is easy to see that the point evaluations are all the homo-
morphisms. Hence, M can be identified with X.

Gleason pointed out (see [1], p. 128-129) that, for ¢,, ¢, € M, ¢, ~ @,
if and only if |lp, — .|l < 2 is an equivalence relation on M, where

lpll = sup le(Hl, feRX),IfI<1.

Each equivalence class is called a Gleason part. If for A€ X we set

X, ={plpe M, p(2) =2},

then X, is called a fibre. In this case the fibre contains exactly one element.
If there exists f € R(X) such that ¢(f) = 1 for all ¢ € X, while |p(f)| < 1,
¢ € X,, then X, is called a peak fibre (point). We denote by X* the union
of all the fibres corresponding to interior points of X. By ¢, #, X* can
be identified with X.

We write

. o (f)] _ =
e(psr 72) = 0P {—-—“ Il <1, ) o,feR(X)}.

o i8 a metric on M with o(p,, ;) <1 if and only if |jp, —g,ll< 2
(see [1], p. 128-129). We will need the following result:

THEOREM 1. Suppose that {v,} is a sequence of point.ls' in X and let
{9.,} be the associated homomorphisms. Then {z,} is Cauchy with respect
to d, if and only if {p, } is Cauchy with respect to o.

Proof. Suppose that {(pzn} is Cauchy with respect to g¢. Let ¢ > 0
be arbitrary and let
e —1
e +1

Since {p,} is Cauchy, there exists N, such that n,m > N, imply
e(9z, ) ¢z,) < 6. Hence for any n, m > N, we have

Sgplf(w,.)l <é forall f, |fl<1, f(#,) =0, and fe R(X).

Let f € R(X); then [f(4), f(®,)] € B(X) and

1+ [f (@), f@n)] _ 149
1= [f(@), fl@n)] ~ 1—9

Therefore,

1. 14+0f@),f@m] 1. 148
3% T (), fan] 2 8 1=9

This implies d,(x,, *,) < & for n, m > N,. Hence {z,} is Cauchy.

< &.




CARATHEODORY-LIKE METRIC 89

Conversely, suppose that {z,} is Cauchy with respect to d,. Let ¢ > 0 be
arbitrary. Then for n, m > N, we ha.ve

1+s
—8

A(Zpy Tp) < o log
Hence [f(z,), f(z,)] < e. Therefore
SI}PI%,,(f)I <s feR(X), |Ifl<1, and flz,) =0,

ie., 0(Ps, Pzr,) < €
The following theorem is easy to prove.

THEOREM 2. Let {x,} be a sequence in X and assume that e X is
such that », — A. Then |lp, — @il — 0 if and only if o(g;_, p2) > 0.

3. Main result. We will show that the main result of [3] is valid with
a slight technical addition. We assume that X is a bounded region in C with
int X = X and
lim m(4,(A)NiX) —a
e m(4,)
where m denotes two-dimensional Lebesgue measure, 6.X is the boundary
of X, and

a<ll,

_ 1]
4,(2) = {yeCHy—ll< pl

A being a non-peak point.
THEOREM 3. Let X be as above. The following propositions are equivalent:
(a) X ts complete with respect to d,.
(b) X* is an entire Gleason part.
(c) X, 8 a peak point for all boundary points A.
(d) The d,-closed and bounded sets are compact.
(e) X* is closed with respect to ||-|| as a subset of the mavimal ideal space.

We begin by showing (b) = (a). It is not difficult to show that X*
is always contained in a Gleason part (see [1], p. 130). Let {z,} be a Cauchy
sequence in X with respect to d,. Then, by Theorem 1, {cp,,n} is Cauchy with
respect to ¢ and hence with respect to |-||. However, the complex homo-
morphisms are complete with respect to this norm, i.e., there exists p € M
such that ||q9_,, — || - 0. However, X* is the entire Gleason part by assump-
tion. Therefore, @ € X*, i.e., there exists x, € X such that ¢ = ®z,- There-
fore, ||<pzﬂ Pz, ll = 0. This 1mphes |, — %o| — 0. Since d, and the ordma.ry
metric yield the same topology, 4,(=,, #,) — 0 and d, is complete.

We next show (¢) = (b). Suppose that ¢ ¢ X*. Then ¢(2) = 1, where 1
is & boundary point. By (c), there exists f € R(X), lIfll <1, f(2) = 1 while
If(#)| < 1 for all ze X, # # A. Form g = [f, f(2,)], @ € X. Now

olprypz) =1 and * ¢ ~ @



90 M. A. SELBY

In order to show the difficult part of the theorem we need a few
definitions used in rational approximation.
Let A be a compact subset of the plane, and x4 a complex Borel meas-

ure on A. We write
- d 2
i(2) = f lsl(2)

Using Fubini’s theorem, we can show that i(x) is locally an L'-
function. Hence @(2) < oo a.e. We say that a complex measure » repre-
sents a homomorphism ¢ if

o(f) = [fdv for all feR(X).

X

The following theorems are due to Browder (see [1], p. 176).

THEOREM A. Let v € X and let 4 be a measure which represenis @, .
Assume that
&

>0 amd 6=—-—1-—.
© l+1+e

Then |p,—o,ll< & whenever |y —z|ii(y) < 9.

THEOREM B. Let u be a compactly supported measure in C. Let s C
and let A, be the disc centred at x of radius 1 /n. Then

. n? .
pio) = im ™ [ o —zladm,
n—+o00 T dn

where m denotes two-dimensional Lebesgue measure (see [1], p. 157).

We are finally ready to show (a) = (¢). Suppose that 1 is a boundary
point which is not a peak point. Then there exists a representing measure u
with u({1}) = 0 (see [5], p. 5). Let

_ 1
P.— {yeX|lp—opl<s oand A1) = {y cCly—1l< 7}-

Let
&

0= ——— —— e> 0.
1+ [lull+¢’

By Theorem A,
P,>{yeClly—Ailialy) < é},

P,n4, > {yed,|ly—Ala(y) < é}.
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Therefore

1
m(P,04,) > m({y € A lly—HEW) < ) > m(d) =5 [ A—yiddm(y).
An

Hence
m(P,nA4,) n? J‘ 2
—————>21—— | |[A—y|ud .
m(4,) = "y y | ylp m(y)
n
Therefore
. m(P,n4,)
lim —— =1.
n—+00 m(An)
Hence
m(P,ndXNn4,) m(P,nXnA4,) o1
m(4,) m(4,) '
By assumption,
lim m(P,noXNA4,) Ce<l.
P— m(4,)
Therefore, there exists a subsequence {n,} such that
m(P,nXN4,,)
- g>0.
mdyy P
By relabelling, we call the subsequence {n}, i.e.
m(P,nXnNA4,) B >0.
m(4,)

Consider ¢; = 1/l. Therefore, for each ! > 0 there exists

Ty € Ay NX NPy, ey [lpi— gl <%-

Hence o(¢ o ¥ > 0. Therefore {%i(:)} is Cauchy with respect to .

Consequently, ?w,m} is Cauchy with respect to d,. If there exists z, e X

with d(x;q), #,) — 0, then |z;; —2o| — 0. However, [z;;— 4| — 0, and hence

2, = A, a contradiction. Therefore, X is not complete with respect to d,.

We have shown that (a), (b), and (¢) are equivalent. Clearly, (d) = (a).

Let A be a d,-closed and bounded set of X. Then A is relatively closed.

We need only to show that A is compactly contained in X to conclude
that A is compact since X is bounded.

Suppose that A is not compactly contained in X. Then there exists

a sequence {z,} < A with @, — 4, where 4 is a boundary point. By assunip-

tion, there exists K such that d(«,, #,) < K for all » and m. Since X is
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complete, 1 is a peak point. Therefore, we can find f € R(X) with f(4) = 1,
Ifll <1, and |f(z)| < 1 for all z € X, & # A. By composing with a Mébius
transformation, we may assume that f(z,) = 0, |fI<1, |f(z)|I<1, re X,
and |f(4)] = 1. Since f is continuous at 4, |f(2,)] = 1. We have

1+ 1f (@)l

Let » — oo and we have a contradiction. Hence (a) = (d).

Finally, suppose that X is complete and lpz,, — @Il = 0. Since (a)-(d)
are equivalent, X* is an entire Gleason part. Therefore, Pz, ~ @ Since
lpz, —@ll < 2 for n large enough. We conclude that ¢ ¢ X*, i.e., ¢ = Pz,
for some z,.

Conversely, if X* is closed and there is a boundary point A which is
not a peak point, then, as before, there exists {#,} < X with z, - 1 and
lpz, —@all = 0. Since X* is closed, ¢; = @,,, % € X. Hence, ¢,(2) = ¢,,(2)
or A = x,, a contradiction.

< 2d(2y, @,) < 2K

4. Examples. Recall the Carathéodory metric:

1. 14[f(2),f@)]
d = —1
(#:9) =805 18 1 ra), f)]

Clearly, every region X complete with respect to d, is complete with
respect to the Carathéodory metric. However, we will give an example
of a bounded region X with int X = X, and m(0X) = 0 such that it is
complete with respect to d but not d,.

There is a criterion to determine when a boundary point A is a peak
point. This is due to Melnikov.

THEOREM 4 (see [5]). 4 is a peak point for R(X) if and only if

Ifl <1, f e H(X).

D 2" (B, () - X) =

n=1
where y denotes the analytic capacity and
E,(2) = {z|127" < |z2—A1 < 27"}

From this we easily see that every X with the boundary points line-
arly accessible from the exterior are peak points. In [4] it is shown that
if int X — X, then the peak points are dense in the boundary.

Consider the following regions:

Y =4(0;1), A=U d(z,;7,),

n=]1
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where
J(w,,;r,,)={w||m—a:,,|<r“}, 1>m1>m2>...>wn—>0,
o+n<l, @ ,+7,,<B—7,.

For X = Y—(4uU{0}), int X = X and X is complete with respect
to the Carathéodory metric if and only if

(*#) 2 In = 00
neml Tn

(see [4]). It can also be shown that {0} is a peak point for B(X) if and only
if (**) holds. Therefore, for these regions at least the Carathéodory metric
is complete if and only if it is complete with respect to d,.

We now construct a region with the properties stated at the beginning
of this section, that is, complete with respect to d but not d,. In [3], X
is complete with respect to d if and only if X, is a peak fibre for every
boundary point . We know (see [2]) that X, is a peak fibre if and only if

D)2"y(B, () — X) = oo.
n=1
Using this we see that 4(0,1)—[0, #] is complete with respect to
the Carathéodory metric. However, this region does not satisfy int X = X.
Consider
Y =4(0;1), E,={|27"7<RI<27

From E, delete closed discs 4, ; satisfying the following:
V) dppxndy; =9, k #j.

oo
(2) 3 7, <107", where r,, is the radius of 4,,.
k=1

(3) The closed discs accumulate exactly to INE,, where I = [0, ].
An accumulation as in (3) is possible, for we only have to take the
centres of these discs to have rational coordinates converging exactly to
INnE,. Let
X =Y-Ud,.~1I,
n,k

where X satisfies int X = X and m(0X) = 0. Clearly, every boundary
point is a peak fibre of H*(X). Hence, it is complete with respect to the
Carathéodory metric.

To show that X is not complete with respect to d,, we prove that {0}
is not a peak point for R(X). First,

Y(inEn) < Y (LJI» An,k)’

where X denotes the complement of X.
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We need the following theorem (see [5]):

THEOREM b. Let K be a compact set and let o be a rectifiable contour
which has the winding number 1 around each point of K. Then

1
y(K) < —length(o).
2w
To estimate y({J 4,,) we set
k

y(U 4, ;) = sup y(K),
] Kc Aﬂ,j

where K is compact. Since finitely many of the 4, , cover K, we have

00
1 8 1
7(K) < o j;l' 27nr, ;< 10°"
Therefore

1 = 1
< — < —.
7 L!) 4, o and ¥ (XNnE,) 0

Consequently,

0 . 1
Z 2n7(XnEn) < ';"

n=1

and {0} is not a peak point of E(X). Therefore, d, is not complete.
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