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1. Introduction. In [3] Monteiro points out that in a relatively com-
plemented distributive lattice every ideal is the intersection of maximal
ideals, and, consequently, the dual statement for filters. Further investi-
gation by Monteiro revealed that if L is a complete distributive lattice
such that every ideal is the intersection of maximal ideals, and dually
for filters, then L is relatively complemented. The subject of this paper
is the problem he then considered, namely whether it is possible to drop
the restriction that L be complete (Problem 39 in Gritzer [2]).

We give two different examples of restrictions that can be imposed
on distributive lattices satisfying the ideal and filter conditions that
force relative complementation. However, we show by the construction
of a counter-example that some extra condition is always necessary.
That is, we give an example of a distributive lattice such that every
ideal is the intersection of maximal ideals, similarly for filters, which is
not, relatively complemented.

The problem is tackled from a topological aspect and as such we
deal only with (0, 1) distributive lattices. Any generalizations to lattices
without a zero or unit are straightforward.

I would like to thank my supervisor Dr. Brian Rotman.

2. The topology. We use the topological representation of distribu-
tive lattices introduced by Priestley in [4] and begin by restating some
of those basic definitions and theorems.

Definition 1. (1) An ordered space is a topological space with a partial
order (<*).

(2) A subset S of an ordered space is increasing when, for any ze S,
if y>*a, then ye S (decreasing is defined similarly).

(3) The space 8 is totally order disconnected when, for any z,ye S,

x *y, there exist disjoint clopen sets X, Y such that zeX, yeY, X is
decreasing and Y is increasing.
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Distributive lattices have a representation in topological terms. The
interpretation of a particular lattice notion or vice versa is referred to
as its dual. Topological duals will be denoted by a prime symbol.

THEOREM 1 (THE REPRESENTATION THEOREM). Ewvery (0,1) distri-
butive lattice L has a dual space L' which is compact and totally order dis-
connected. L being isomorphic to the lattice of clopen decreasing sets in L'.
Conversely, every compact totally order disconnected spdace is the dual space
of some (0, 1) distributive lattice.

LeEMMA 1. For a (0, 1) distributive lattice L, there is a duality between
ideals (filters) in L and open decreasing (closed decreasing) sets in L'. For
an ideal I (filter F), del (de F) iff &' < I' (d’' = F').

The problem in hand concerns maximal ideals and filters, together
with their intersections. We develop the topological representation ac-
cordingly. As is usual, we denote the closure of a set X by ~X.

LeMMA 2. (1) (a) The dual of a maximal ideal I is an open decreasing
set I' = L'—{d} for some de L'.

(b) The dual of a maximal filter F is a closed decreasing set F' = {d}
for some de L'.

(2) (a) If an ideal I = (I, where I, is an ideal for ke K, then
ke K

I' = U|{X| X is an open decreasing set and X = (M I,}.
ke K

(b) If a filter F = (&'}, where F, is a filter for ke K, then

ke K

F={z|le< y,ye(UFk)l

Proof. (1) (a) Suppose I is maximal and d,,d;e L' —1I', d, # d,,
either d, {* d, or d, L* d,. If d, * d,, there exists a clopen decreasing
set D, such that d,e D, and d,¢ D,. But then I'uD, is open decreasing,
d,¢ 1I'UD, and I' « I' UD,, contradicting the maximality of I.

(2) (a) we I iff &’ = I iff ' = N I.

) ke K
Similarly (1) (b) and (2) (b).
LemMmA 3. For a (0,1) distributive lattice L, let {I,,|me M} be the
maximal ideals and {F,|ne N} the maximal filters.

(a) Every ideal I = () 1, for some M’ iff de L' means that d is

meM's M
mazximal (<*) or Aw,e L', re R, such that de (U{w,}), z,>*d and =z, is

maximal (<*).
(b) Every filter F = (1 F, for some N' iff de L' means that d s

neN'sN
minimal (<*) or Ax,e L', re R, such that de (U{w,}), z,<*d and xz, i8

minimal (<*).
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Proof. (a)'We begin by showing the condition is necessary. Suppose
there exists a de L', d not maximal (<*) and there is no R such that
de (U {z,}) with z,>*d and », maximal (<*).

reR

Consider D = {x|z >* d}. We claim that D is closed. If not, there
exists a ye D such that y 3>* d, and, consequently, a clopen decreasing
set X, yeX and d¢X. But d¢X implies DNnX = @, a contradiction.

Since D is closed increasing, L' — D is open decreasing and represents
an ideal. We show that the dual ideal of L’ — D is not an intersection of
maximals.

Let D, = “{wr|x >*d and « is maximal (<*)}. By hypothesis, d¢ D,.
Thus, for ¢ D,, there are a clopen increasing X, and a clopen decreasing Y,
such that X,NY, =0, zcX, and deY,. {X,;},.p, forms an open cover
for D,, which, by compactness, has a finite subcover X, , ..., X,,. Then

Y = () X, is a clopen decreasing set, yet it contains no maximal (<*)
1<i<n

point p >*d; hence Y is contained in every maximal decreasing open
set that contains L’'—D. But de¢Y thus, by Lemma 2, the ideal with
dual L' — D is not the intersection of maximal ideals containing it.
Next is the sufficiency. Given an open decreasing set X, then, clearly,
for de L' — X, if d is maximal (>*), d is not a member of any open set
contained in L’'— {d}. If d is not maximal (<*), then {z,},.p exists but
x, >* d implies x,¢ L' — X. Hence, d is not a member of any open set in

ﬂ L'— {wr}

reRR
By Lemma 2, the ideal with dual X satisfies part (a) of the lemma.

Part (b) is similar. |
By strengthening the hypothesis of Monteiro’s problem, we deduce
the next two theorems.

THEOREM 2. If L is a (0, 1) distributive lattice, every filter is the inter-
section of maximal filters and L is pseudo-complemented, then it is a boolean

- lattice.

Proof. Suppose, to the contrary, that L is not a boolean lattice.
Then there are d,,d,e L', d, <*d,. Choose a clopen decreasing set D,
dye D and d,¢ D. By hypothesis, D has a pseudo-complement, say C, in L’.

If ye L’ and y >*d for some de D, then y¢ C; otherwise de DNC,
a contradiction.

Alternately suppose ye L’ and y 3* d for any de D. Then, for de D,
there exist a clopen increasing X, and a clopen decreasing Y,;, X;nY,; = O,
deXzand yeY,;. D is closed implies the open cover {X,;}, de D, has a finite
subcover X;,..., X; . Thus

yeY = Ydi
1I<i<n

which is a clopen decreasing set. But DNY = @ implies Y < C; hence y¢C.
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This means that clopen ¢ = {y|y 3* d for any d< D}. Hence d,e {y|y>*d
for some d e D} — D, a clopen set. But d, is not minimal (<*), so, by Lemma 3
any clopen set containing d, contains minimal (<*) points «,. A contra-
diction, since x, 35* d for any de D.

A lattice L is scattered providing the chain of rationals cannot be
embedded in it.

THEOREM 3. Let L be a (0, 1) distributive lattice satisfying the maximal
ideal and filter conditions of Lemma 3. If L is scattered, then it is a boolean
lattice.

Proof. For p,, p;e L, p, < ps, we say that {p,, p,> is a nice pair
providing in the topology there are points d,, dye p,—p,, d; <* d,. Sup-
pose L satisfies the maximal ideal and filter conditions and {p,, p,) is
a nice pair. Choose a clopen decreasing set C such that d,e C and d,¢ C,
and let ¢ = (Cnp,)up,. Now, d,e ¢ —p, and d, is not a maximal (<*),
hence, by Lemma 3, there is an , ¢ ¢ — p, and d, <* z,. Similarly, d,e p, —q
is not minimal (<*). Hence there exists an @,e p,—q’, £, <* d,. That is
to say that, for a nice pair {p,, P>, P, < P., there is a triple p, < ¢ < p,
with <{p,, ¢> and {q, p>, nice pairs.

Now suppose L is not a boolean lattice; then there are d,, d,e L/,
d, <* d,. Therefore, (0,1> is a-nice pair. ,

Using the generating procedure just described, it is possible to embed
the rationals, a contradiction.

3. The construction. We begin with some basic definitions for a set 4
with a total order (<).

Definition 2 (e.g., Sierpinski [5]). (1) If 4 = 4,u4,, A, #0O
(t=1,2), 4,n4, = 0O and, for any a,¢ A, and a,eA4, we have a, < a,,
then (4,, A,> is called a cut for A.

(2) If in a cut <4,, 4,) either A, has a last element or A, has a first
element, then we say that cut gives a jump.

(3) If a cut <4,, 4,> is such that 4, has no last element and A,
has no first element, then that cut gives a gap.

(4) An initial segment of A is a set A’ such that a,¢A4A’ and a, << a,
implies ayeA’.

Consequently, there is a natural correspondence between initial
segments and cuts. So that in a set whose members are initial segments
a particular element is either @, A, a jump point or a gap point depending
on the type of cut it gives.

Definition 3 (e.g., Birkhoff [1]). (1) An open interval in A is a set
of one of the forms: (i) 4, (i) (, a) = {z|x < a}, (iii) (a,) = {z|2 > a},
(iv) (a,b) = {wx|a<x < b} for a,beA.
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(2) The interval topology on A is the topology with the open intervals
as base.

Consider now the chain C formed when the initial segments of the
rationals in the real interval (0, 1) are ordered by inclusion. The interval
topology on C is a compact totally disconnected space and is well known
as a representation of the countable atomless boolean algebra. C is a natural
candidate amongst the class of compact totally ordered spaces that might
harbour a suitable counter-example as a sublattice, since Theorem 3
states that the lattice C is always embeddable in the minimal boolean
extension of a proper distributive lattice satisfying Lemma 3.

We now impose a partial order (<*) on C by induction.

Definition 4 (). Let <{r;>, 1 <¢< w, be an enumeration of the
rationals. Choose a gap point pe C (Definition 2, (3)).

I. (a) Choose a sequence of gap points p, (¢ < w) satisfying the
following conditions:

(i) ps < p; for 1 <35 p; # p;

(i) pe{p;|i < o}

Let p;<*p for i < w.

(b) Choose clopen intervals P; (i < w) such that

(1) pie Py;

(i) P;nP; =@ (i #j);

(iii) length (P;) <1/2 in the pseudo-metric imposed on C by the
real metric on (0, 1);

(iv) (;11), (71]¢ P;.

II. (a) For each n < w, choose a sequence of gap points p,; (1 < w)
such that

(i) pm’< pm’ for @>.77 Pni ¢pn;
(ii) ppe™{Pnil? < 0};
- (iii) ppie P, .
Let pni >* pn-
(b) For each n < w, choose clopen intervals P,; (¢ < w) such that
(1) Pnie Py _

(11) Pn'in-Pnj =0 (/" #J)’

(iii) length (P,;) < 1/2%;

(iv) (, 72)y (5 72]¢ Ppy;

(v) P; = P,.

We now inductively repeat stages I and II with inserted clauses
dual to IT (a), (iii), and II (b), (v), in I:

(a) (iii) pnl...nz,.ie-Pnl...nm.;

() I would like to thank B. Davey for his criticism of an earlier presentation.
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(b) (V) Pnl...n2ri = Pnl...n2T°

THEOREM 4. The space (C, <*) ts the dual space of a (0, 1) distributive
lattice L in which every ideal 8 the intersection of maximal ideals and dually
for filters, but is mot boolean.

‘Proof. The space is compact and totally diseonnected so that we
must show that («) (<*) is a partial .order, () the space is totally order
disconnected, (y) (<*) satisfies the conditions of Lemma 3.

() The points involved in the relation (<*) are the following:

(i) pp<*p, n< w;
(i) Pryongyry <* Pryngy 1 ST < 05

(1) Py, ngp >* Pryiigy_pr 1 ST < 0.

After a point has been chosen to be a member of the relation (<*),
it is only directly involved in one more induction stage, hence we see
that the relation is reflexive, antisymmetric and, by default, transitive.

(B) Given d,,d,e C we must construct appropriate clopen D, and D,.
We begin by making the following observations:

At an odd stage 2r+1, r > 0, for ze P,
we have

and ye C—P,

1---R2r41 1-Peri1?

(x compa’ra’ble (<*) y)—é(m =pn1...n2”_l7 y = pnl...nzr and w<* y)'
At an even stage 2r, r > 1, for ze P, ,, and :ye C—P,, . 4, We have
(¢ comparable (<*) y)—>(2 = Pu, . .nys ¥ = Dny..my,_, 30d 2>* 7).

A new pair # <*y is formed after a stage » only if #,yeP, ., for
some sequence <7, ...n,». Thus we always have Pn1-~-n2,-+1 is decreasing

and P, ., 18 increasing. Thus we always have one of P, .. and P, . o

is clopen increasing and the other clopen decreasing. Together with the
fact that P c P, .. We have the following statement: ’

n]...n,._H -
(A) If dyePp n, " and d,¢ P, ., ,then d, and d, may be separated

by the desired D, and D,.

Let P = {p,, . |7 =1, n;< w}u{p}. Noting that if X is increasing,
C — X is decreasing (similarly decreasing), we now consider the possible
values of d;.

(i) dy, dye P.

Since (<*) < (X), if d, <* d,, we can choose a rational s such that
d, < (,8)<d;. Then D, = (@, (,8)] is a clopen decreasing separating set.

For convenience, if one of d,, d, is defined at a later stage than the
other, let this point be d,. Suppose we are at an odd stageand d, = Pryngpyr?
r = 0. Then, by (A), we need only consider d,e P, . . .ny, (i r =0, we would
interpret this as C) but this means that d, = p, ., (i.e., d;<*d,) or
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dy = Pn,..n,m+ I the event of the second case occurring we see that
P and P, ., n are both decreasing clopen sets. Thus, by Defi-

nl...n2r+1
nition 4 (b), (ii) and (i), one of them will serve as an appropriate D;,.

Similarly at an even stage with d, = p, n,, r=>1. If d, and d,
are not comparable (<*) and condition (A) fails, we choose appropriately
from the two clopen increasing sets P, . and P, ., .. Thus we now
need only to consider the case

(ii) Either d, or d,¢ P.
Suppese d,¢ P and at a stage r we have d,e P, , and d,¢P, . m

for any m < w. By construction for ze P, , , if # belongs to the boundary
of U Pnl...n,.m7 then x = pnl...n,.°

m<w

Thus, there is a clopen interval I such that I < P, ., INP, .m
=@ and d,e I. Hence xe¢ I implies ¢ P.

Let I' be a clopen set in the space C such that d,e I' and d, ¢ I'. Then
D, = InI’ is clopen increasing and decreasing and will always serve.

Next we consider the case where there exists a sequence n,, r < o,
such that d,e P, ., for any r < w. By Definition 4 (b), (iv), d, must
be a gap point, and thus the pseudo-metric and Definition 4 (b), (iii),
ensure that d,¢ P, , for some r. Continuing the induction step one
more stage gives condition (A) and we are through. *

(Y) We see from the relations in («) that p is maximal (<*), Pp,. n,, i8
maximal (<*) and p,, ., ,, 18 minimal (<*). Thus, by Definition 4 (a), (ii),
the conditions of Lemma 3 are satisfied. Hence (C, <*) is a genuine dual
space that satisfies the maximal ideal and filter conditions, yet, by
virtue of the relation (<*) fails to be boolean.

Addendum. Monteiro’s problem has been independently solved by
R. Balbes using an alternative method.
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