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A NOTE ON THE INTERSECTIONS
OF COUNTABLY GENERATED o0-ALGEBRAS

BY

D. H. FREMLIN (COLCHESTER) anp J. JASINSKI (GDANSK)

Let ¥, < %, be countably generated o-algebras on a set X. We present
some conditions under which there exists a non-countably generated o-
algebra . such that ¥, < .o = %, and under which .¢ can be obtained as
an intersection ¥, N %3 for some countably generated %5 on X.

1. Let € be a o-algebra on a set X. The g-algebra € is called countably
generated (c.g.) if there exists a countable family % of subsets of X such that
% = oy (%), where ox(%) denotes the smallest g-algebra on X containing %.

This note* is the result of work inspired by a problem of B. V. Rao
([6], P 687) and some obvious questions arising from its solution [4]. The
main problem we shall investigate may be stated as follows:

Suppose €, < €, are c.g. o-algebras on a set X. Does there exist a c.g.
o-algebra ¥, 2 ¢, such that €, N ¥, is not c.g.?

We are mainly concerned with the case where ¥, and ¥, are generated
from ¥, by adding one set. In this situation Corollary 2 seems to provide a
satisfactory answer to the above question. Also we would like to attract the
reader’s attention to Lemma 1’ which, we believe, may be of independent
interest.

For a set X, #(X) denotes the family of all subsets of X. Whenever
Y <X and o« < 2(X),

Aly={ANnY: Aesd)}.
If X is a metric space, then #(X) denotes the family of all Borel subsets of
X. In particular, if X is a subset of the reals R; then #(X)= #(R)|y.

* Most of the work of this note was done while the second-named author was visiting the
University of Essex with the support of the British Council.
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Notice that if ¢ is a o-algebra on X and V < X, then
ox (€U {V}) = {(E; nV)U(E,\V): Ey, E; €6}
= {(C; nV)U(C,\V)UCs:

_ C,,C,,C5;€¥% and C,, C,, C; are pairwise disjoint}.
To see this, set

Cl =E1\E2, C2=E2\E1, C3 =El (-\Ez.‘
MA stands for Martin’s Axiom and CH for the Continuum Hypothesis.

2. The main point of this section is Lemma 2 which turns out to be
a powerful tool when investigating the structure of c.g. o-algebras.

LemMA 1. Let X be a set and let ¥ be a c-algebra on X. If
V,W<cX and Aeoy(¥uiV])nox(¥ui{W}),
then there are D, D' €€ such that

D<VAW and D nn(VAW)=0
and

ox (€U i{dA}) =ax(€uiDNV,D' NV}).

Proof. Because Ae€ay(€uiV}) nax(€uiW}), we can find pairwise
disjoint B,, B,, B;€% and C,, C,, C; €% such that

A= (B, nV)U(B,\V)UB; =(C; nW)U(C,\W)u Cs.
Set
D, =B,nC,, D;=B,nC;, D=D,uD,,
Di=B,nC,, D,=B,nC,, D =DjuD,.
Straightforward calculations show that
DinA=D,nV=D\W, D,nA=D,\V=D,nW,
DinA=DinV=DinW, D,nA=D)\V=D)\W.
It follows that
DS VAW, Dn(VAW)=0, DnVeox(uiAd)
and
D'nVeay(€ui{A)),
so that
0x(€UiD NV, D NV} Sox(Fu{A)}).
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Notice that
A=B3;UC3u(Dy "(DNV))u(D\(DNV))
u(Dy (D’ A V) U (DR \(D' A V));
hence Aeox(€uiDnNV,D' nV}) and
ox(€UlD NV, D' AV}) =ax(4Uid}).

For % < 2(X) write gx(%¥) for the subalgebra of 2(X) generated by %.
Observe that in the above proof only finite set operations have been used,
and therefore it actually shows that the following fact is true:

LEMMA 1'. Let X be a set and let € be a subalgebra of #(X). If
WeX and Aeor(€U{V])nox(€UiW),
then there are D, D' €€ such that
DSVAW, Dn(VAW)=0
and
ex(FU{A}) =ex(¢u DNV, D' V).
LEMMA 2. Let X be a set, let V, W = X, and let € be a a-algebra on X.
If 2 is a cg. o-algebra with
€ <D cax(6UiVY) nox(4u W),
then |
D =0ox(4u(DuD)NV))
for some D, D' €¥ such that
DcVAW and D nNVAW)=0.
Proof. Let {A,: n <w} = 2 be such that
2 =0x(§UiAd,: n<w)).
For each n <w, by Lemma 1 choose D;,, D, € ¢ such that
D, VAW, D,An(VAW)=0
and

(*) Ux(%u {An}) =6X((gU{DnnVa D;,('\V})

Set
D= D, and D = () D,.

n<w n<w
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Clearly, DNV, D'nVe9D, so
ox(¢u{DuD)nV}) c 9.
Since for every n <w
D,nV,D,nVeox($u{DNV,D' nV}) =0ox(6u{DuD)nV}),

by (») we have A,eax(4w {(DuD)nV}), and the proof is complete.
Also we would like to recall a well-known fact (see [1], p. 8, (1)):

LEMMA 3. If 9 is a family of subsets of X and ax(%) is c.g., then there
exists a countable family 4 = % such that ox(¥) = ax(9).

LEMMA 4. If € is a c-algebra on a set X and F < P(X)\¥ is an
uncountable disjoint family, then there exists #' < % such that o(€ v F') is
not cg. '

Proof. Suppose that ¢ and ¢y (¥ w %) are both c.g. By Lemma 3 we
have oy (€U F) = ox(%) for some countable family ¥ = €U #. Set

E=X\U(¥n%)

and enumerate #\ ¥ as {F,: a« <x} for some cardinal x. Since ox(%) e
= % |, there is a disjoint family {C,: « <w,} < € with C,nE =F, for a
<w;. Now let

F = {F,: a <w,}.

Then ox(% U .#’) is not c.g. Indeed, by Lemma 3 it suffices to show that
whenever 4 = 6 U .#F' with 6 cox(%) is countable, then F,eax(¥) iff
F,e 9. To use this, look at

E =X\U{C,: F,e¥}

and notice that ox (%) |z =%z < 4.

3. The main results

THEOREM 1. Let X be a set, let V < X and let € be a cg. c-algebra on
X. Then the following conditions are equivalent:
(i) There exists a non-cg. o-algebra o/ on X such that

¢ <o cox(€u V).
-(11) There exists an uncountable disjoint family
F cox(¢u{V})\%.

(i) There exists a o-algebra o, with € <= A, S ox(€ U {V}) which is
not expressible as ax(% U {A}) for any A c X.
Proof. Since ox(éuU {A4}) is cg. for every A c X, (ii) implies (iii) by
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Lemma 4. By Lemma 2, (iii) implies (i), so it remains to show that (i) im-
plies (ii).
Assume (i). Let # = {Ce¥%: o [c is cg.}.
CLAIM. Let Be 4\ é, B = (B, nV)u(B,\V) for some B,, B, €€. Then
Bl ABzeJ and (gralwz¢dr81w2.
To see this, set D =((B,\B,) nV)u((Bs\B,)\V) and notice that

G (6 {V}) 8.8, S F 18ian, SO(€ UV 5,48,
so B;AB,ef. Since D=B\(B,NB,;), we have Ded |5 ,5,- Also B
= Du(B, NnB,) so that
D¢ € 2 €p,us,-

J is a proper og-ideal in %, so inductively we may construct a disjoint
sequence {C,: « <w,} such that C,ef and o [c # %|c, At the step a,

apply the Claim to X\{J {Cy: B <a}. For each « <, pick F, e |, \é, so
the family # = {F,: « <w,} has the required properties.

CoROLLARY 1. Assume MA. Then there exists a set X < R with |X| = ¢
such that, for every V C X,

A =ox(B(X)L{A4}) for some A =X
whenever o/ is a o-algebra such that
B(X) A Cox(B(X)L{V}).
Proof. Let X = R be a c-Lusin set (see [3], p. 43, 22D) so that |[X]| = ¢
and |X Nn M| < ¢ for every meagre M = R.
Let V < X and let {F,: o <w,} be a disjoint family in ax(#(X) U {V}).
There are disjoint {B,: « <w;} and {B,: « <w,} in #(X) such that
F,=(B,nV)U(B.\V).
Since all but perhaps countably many B,’s and B.’s are meagre, we have
o < |F] =¢| < o,
and hence by [3], p. 60, 23C,
e <o F.¢ BX) < 0.

Theorem 1 completes the proof.

A cg. o-algebra € on X is called separable if {x} €% for every xeX.
Corollary 1 shows that it is consistent to suppose that there are separable o-
algebras %, & %, such that all the “intermediate” o-algebras .o with
6, <. =%, are cg. We do not know whether such g-algebras can be
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constructed within ZFC (P 1357). Notice that the requirement that ¢; and
%, are separable is essential. Otherwise we could simply take any set X with
2<|X| <o, pick x, yeX, x # y, and set

% ={X' cX: xeX' iff yeX'} and ¥, =P(X).

LEMMA 5. Let X be a set and let € be a cg. o-algebra on X. Suppose
that V < X is such that ax(€ U {V}) nox(€ v {W}) is cg. whenever W < X.
If % <€y, then there is a set D €% such that

DnVecly#« and U\DEe¥ for all Ueu.

Proof. For U e choose By €% such that U = By, nV. Set
W= UU{y (Bu\V)u(V\U %).
€V

By hypothesis, Dy = ox(€ U i{V}) nox(€w{W))is cg., so by Lemma 2 take
D, D' €€ such that

Dw =ax(€ui(DuD)\V})
and
DcVAW, Dn(VAW)=0.
If Ue, then
Uebly cox(6ulV})) and U =By\Weay(€uiW}),

so Ue9y. It follows that U\(DuD’)e%. But also U < V\W; SO
UnD'=Q and U\(DuD)=U\D.

Clearly, % = V\W, thus DNV =) % as claimed.

THEOREM 2. Let X be a set and let € be a cg. o-algebra on X. Suppose
that V < X is such that ax(€ U {V}) nax(€ui{W}) is cg. whenever W < X.
If % is a disjoint family in ox (€ v {V}), then

() 2V < ¢

(ii) if there exists a complete separable metric on X such that € < #(X),
where B (X) is the family of all Borel sets with respect to that metric, then
|F\ ¥ < w.

Proof. (i) Let & < oyx(€ U {V}) be a disjoint family. For each F €.7 let
Br, Cr €€ be such that ' ‘

F =B V)U(Cp\V).
If F¢¥€, then BenV¢€ or Cp\V¢%. Putting

U={BgnV: FeF} or U={Ci\V: FeF}
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we may assume that # is a disjoint family in €[y such that |%\ 4| = |#\ ],
where V =V or X\V, respectively.
Now, if ' < %\ %, by Lemma 5 there exists a set D€ such that

U ={UeU\¢. DnU # Q).

Therefore 2%\ = 2" < |4 < ¢

(i) Suppose the opposite. By the argument as in the proof of part (i)
there is an uncountable disjoint family {U,: « <w,] in %|y\%. Let
A = {0, 1}* be a non-Borel analytic set and let |B,: a« < w,} be a family of
non-empty constituents of {0, 1}°\A (see [5], p. 499). For each a <w,
choose s, €B, and, by Lemma 5, for each n < w choose F,, F,€% such that

F,nU,=0Q if s,(n=0, U,\F,e% if s,(n) =1

and
(V\ U U)nF,=0;
a<wiy
F,nU, =0 if s,(n=1, U,\F,e% if s,(n=0
and

(N U U)nF,=0.

a<w)

Set F= () (F,uF,). Clearly, U,\F€e% for every a <w, and

(V\ U U)nF=0.

a<wi

Define f: X =10, 1] by

1 if xeF,,

| U =iy e
Notice that f[FnU,] = is,). Set

W= (U (FAU)uf1[4].

a<oy
Take D, D'e% from Lemma 2 such that
DSVAW, Dn(VAW)=0
and
Dw = ox(€U V) Nox (€U (W) =ax(€U{DUD)N V).
Fix a <w;. As

FnU,=Wn f[ls,)] Sox(¥u{W},

2 - Colloquium Mathematicum 56.2
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we have
FnU,e2y and (FNnU)\(DuD)e®.

Also U,nF VAW, so (U nF)ynD =@, and hence
(U,nF)\D'€%.

As U,¢ % and U, \F €%, the intersection (U, "F) " D'¢ % and, in particular,
is non-empty.
It follows that {s,: « <w,} = f[F nD'] and, as f[F nD'] is analytic,
fIFAD]nA#

(see [5], p. 501). Thus D’ meets F N f~*[A]. Furthermore, as D' n(VAW) = @
and f-1[4] =W,

O#D NnFnf [A] V.
But FnVc | U, so

a<wy

DAFAf'[A]n | U, #0,

a<wg
which is impossible because f[FNU,]NA = @ for every a < w,.
By Theorems 1 and 2 we obtain the following
CoROLLARY 2. Let ¥ be a cg. c-algebra on a set X. If CH holds or if X is

a complete separable metric space and ¢ < %#(X), then for every V < X the
Jollowing conditions are equivalent:

(i) There exists a set W = X such that ax(% U {V}) nox(60 {W)) is
not cg.

(ii) There exists a non-c.g. c-algebra & such that

6 <A cax(6u V).

(i) There exists an uncountable disjoint family in ox(% L {V})\%.

CoROLLARY 3. If % is a c.g. a-algebra on a set X and |X| = ¢, then there
exist c.g. c-algebras 6, and 6, on X such that 6 =€, N%€, and 6, "%, is
not cg.

Proof. Enlarge % (if necessary) to a c.g.. ¥’ 2 ¥ with ¢ many disjoint
sets B, €%’ of cardinality ¢. For each a < ¢ pick V,e#(B,)\¥’. Set

V=U"

a<c

and, by Theorem 2 (i), take W < X such that
% =ox(®U{V) and %, =o0x(¢u{W)

have the required properties.
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To show that the assumption in Theorem 2 (ii) is essential we would like
to conclude with the following

ExaMmpLE. Assume MA. Let Y < R with |Y| <cand let X <R be a ¢
Lusin set.

‘By the Rothberger-Silver Theorem ([3], p. 60, 23B) it follows that 2 (Y)
= P(Y). Since whenever D e #(X), then D is a G,, in X (see, e.g., [3], p. 64,
23M(a)), by Theorem 3 of [2] we have-Be# (X xY) iff, for every ye¥,
B’ € #(X), where, for S < X xY, § = {x: (x, y)€S}.

Let V WcZ=XxY.

CLamM. Ceaz(B(Z)u {V}) iff, for every yeY,
C’eoy (B (X)L {V?}).
Suppose that C = Z and, for every yeY,

¢ =B,nV)u(B,\V") for some B,, B,eB(X).
Set

B=U (B, xly}) and B =|J(B,x{y}).

yeY yeY
Clearly, C=(BnV)u(B'\V) and, as B, B €#(2),
Ceaz(Z(X)u {V}).

The reverse implication is trivial.

Now, since ax(2(X)u {V’}) nax(B(X)u {W”}) is cg. (compare the
proof of Corollary 1), by Lemma 2 for each yeY there exists a set D, = X
such that

ox(B(X)U (V7)) oy (B(X) U (W) = oy (B(X) U {D,)).

Set D = ) (D, x{y}) and notice that

yeY

0z(B(2Z)VV})naz(B(Z)U (W}) =ox(B(Z)u {D)).

Obviously, if ¢> w,, |Y] > and V is chosen such that V”¢ %2 (X) for
every yeY, then {V?”x{y}: yeY} is an uncountable disjoint family in
oz(B(2Z)u{V})\2(2)

The above Example shows that it is consistent to suppose that there
exist ‘separable og-algebras %, = %, on X with a non-<.g. o-algebra & such
that 4, < of = %, but for every W < X the intersection 4, Nnoy (%, v {W})
is c.g. As pointed out in Corollary 2 no such o-algebras can be constructed
in the presence of the CH.
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