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METRIZABILITY AND WEIGHT OF INVERSES
UNDER CONFLUENT MAPPINGS

BY

R. ENGELKING aNxp A. LELEK (WARSZAWA)

We say that a mapping f: X - Y of a topological space X onto
a topological space Y is confluent provided for every connected closed
subset C of Y, and points z¢f'(C) and yC, the set f~'(C) is connected
between {r} and f~'(y), i.e. every open-and-closed neighbourhood of «
in f~'(C) meets f~'(y). This notion was introduced in [4]. We say that
a mapping f: X — Y is locally confluent provided every point yeY has
a neighbourhood V, in Y such that f|f~'(V,) is confluent. A routine argu-
ment shows that the class of confluent mappings contains all mappings
which are either open-and-closed, or monotone and closed, or monotone
and open. Thus within the class of continuous mappings of compact
Hausdorff spaces, confluent mappings constitute a common general-
1zation for monotone mappings and open mappings. In the theory of
compact Hausdorff spaces an important role is played also by 0-dimensional
mappings, i.e. those having 0-dimensional inverses of points. A counter-
part to 0-dimensional mappings, suitable for the non-compact case, can
be defined as follows. We say that a mapping f: X - Y is separative
provided for every point x¢X and its neighbourhood U in X there exists
a neighbourhood V of f(x) in Y such that the set f~'(V) is not connected
between {z} and f~'(V)\U, i.e there is an open-and-closed neighbour-
hood of « in f~!'(V) which is contained in U. The concept of separative
mappings is due to Zarelua [10]. A continuous mapping of a locally
compact Hausdorff space is separative if and only if it is 0-dimensional.

The problem of estimating the weight of inverses under 0-dimen-
sional mappings has been investigated by Mardesié [5]. More precisely,
his theorem says that if f: X — Y is a 0-dimensional continuous mapping
of a locally connected compact Hausdorff space X onto a Hausdorff
(infinite) space Y, then w(X) = w(Y). An analogue of this theorem
for non-compact spaces, involving separative mappings, has been given
by Proizvolov [6]. In the present paper we prove that a similar estimation
of weights is possible under the assumption that the space Y is locally
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connected in lieu of the much stronger assumption that its inverse X
is locally connected. Then, however, it is necessary to assume some addi-
tional conditions concerning the function f, and we have done this by
assuming, among other things, that f is locally confluent (see Theorem 1).

The problem of metrizing inverses of metrizable spaces has been raised
by Proizvolov [7] who asked whether or not a compact Hausdorff space
must be metrizable if it admits an open continuous mapping onto a metri-
zable space such that all inverses of points are metrizable (see also [1],
p. 170, Problem 5.5). A negative solution of this problem has been given
by Velicko [8] who constructed a non-metrizable compact Hausdorff
space X and an open continuous mapping of X onto the unit segment I
such that all inverses of points are homeomorphic to I. What we propose
is a positive solution of the Proizvolov problem in a special case: the
mapping is assumed to be separative and the image is assumed to possess
a o-locally finite base consisting of connected sets (see Theorem 2).

We start with an example of a countable-to-one open continuous
mapping of a non-metrizable compact Hausdorff space onto a metrizable
space. In this way we replace the monotoneity of the funection achieved
in [8] by the requirement that all inverses of points are countable. The
notation and the terminology come from [2]. Let ¢ denote the Cantor
quinary set, i.e. the set of all real numbers ¢ such that

i =

M 8
Og_| =

il
—

1

wheret;, =0 or 4 for: =1,2,... We provide ¢ with the natural topology
inherited from the real line. Actually, in our example just the space @
will be an open image of a non-metrizable compact Hausdorff space,
and a special feature of the Cantor quinary set will be exploited: we have
t #ut-2/5 for t,ueQ and + = 1,2, ... It follows that no point (¢, 2/5%
lies on the line * = u 4y for any pair of points t, u Q.

Example. Let D be the Cantor set @ equipped with the discrete
topology and let ¢ : D —@ be the identity mapping. There exist a compact
Hausdorff space D* containing D as a subspace and an open continuous
extension i*: D* —Q of © over D* such that D* satisfies the first axiom
of countability and i*7'(q)\D is a countable discrete subspace for qeQ.
Given real numbers z, and y,, we denote by A(x,), B;(e, Yo) C(¥o)
the plane sets

A(zy) = {(z,y): zp—y <z < 2o+ Y},
Bi(5, Yo) = {(, ¥): (@— )2+ (Y—yo)® < 1/4%,
C(y,) = {(z, yo): weQ},
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for : =1,2,... We put
o 2
i=1

and determine the topology in D* be generated by a neighbourhood
system {88(p)} which is defined as follows. Let p = (x,, y,) e D*; we distin-
guish three cases.

Case 1: peC(0). Then we define

B(p) = {A(wy) N B;(wy, 0) N D*}32,.
Case 2: peC(1). Then we define
B(p) = {(Bi(w,, 1) U [B;(xg, 0)\A(20)]) N D*}2,.
Case 3: peD*\C(0)\C(1). Then

B(p) = {B;(®oy Yo) N D*}32,.

It is easily seen that D* with this topology is a Hausdorff space.
Moreover, the subspace C(0) is Q@ with the discrete topology, i.e. it coin-
cides with D. To see that D* is compact, let us observe that the subspace
C(1) is @ with the natural topology, thus it is compact. Since elements
of B(p) do not meet C(1) for p ¢C(1), every collection covering the space
D* and consisting of sets from our neighbourhood system contains a finite
subcollection. covering the whole set C(1) and also the set C(0) except
for a finite number of points. We only have to adjoin some neighbourhoods
of these points in order to obtain a finite subcollection of sets whose union
U contains C(0) U C(1). But then the subspace D*\U is compact which
yields the compactness of D*.

The mapping i*: D* — Q is now defined by the formula

i* ((95’ ?/)) =&

for (x,y)eD*. Clearly, i* is continuous and open. If geQ, the set i*~(q)
consists of a countable number of points which converge to (q, 0)eD.

Remarks. It seems to be worth noticing that our space D* contains
a countable dense subset, and that the subspace D*\C(1) is very much
like the Niemytzki plane (see [2], p. 34, Example 2). On the other hand,
the subspace C(0) U C(1) is the “double Cantor set” {see [3], p. 629;
see also [2], p. 109, Exercise E). The subspace D being uncountable and
discrete, the space D" is non-metrizable. Nevertheless D* is transformed
onto the Cantor set ¢ via the open continuous mapping ¢* under which
the inverses of points are countable, and thus they all are metrizable.
By a result of Proizvolov [7], the inverses of points under such a mapping
cannot be finite. Taking a standard extension of i* over the cones built

Colloquium Mathematicum XXI.2 16



242 R. ENGELKING AND A. LELEK

up over D* and @, we obtain a countable-to-one open continuous mapping
of a non-metrizable continuum onto a metrizable continuum. The latter
continuum is not locally connected, and this is essential here (see Coro-
llary 3.3).

LEMMA. Let f: X — Y be a separative continuous mapping of a topolo-
gical space X onto a regular space Y and let {G,}s.s be abasein Y. If F, = Y
is a set such that Gy « F, = G, and F, denotes the collection of all open-and-
closed non-void subsets of the subspace f~'(F,) for se8, then the collection
B defined by the formula

B = U {IntQ: Q<¥,}

8¢S

18 a base in X.

Proof. Suppose U < X is an open set and x¢ U. Since f is separative,
there exist a neighbourhood V of f(z) in Y and an open-and-closed neigh-
bourhood P of z in f~'(V) such that P = U. Since Y is regular, there exists
a neighbourhood V, of f(x) in ¥ such that ¥V, = V. Then there exists
an index syeS satisfying f(x)eG@, = V,. Thus F, = V whence f'(F,)
< f7(V) and ‘the set @ =P n f~'(F,) is open-and-closed in f~'(F,).
But the sets f~'(F,,) and f~'(V) are neighbourhoods of # in X, and so
are the sets P and @. Consequently, we have Q¢ ¥, and @ = P c U, whence
zeIntQ B and IntQ <= U.

THEOREM 1. Let f: X — Y be a separative locally confluent continuous
mapping of a topological space X onto a locally connected regular space Y.
If w(Y) <m (where 8, < m) and there exists a dense subset A = Y such that
' (y) is a compact Hausdorff subspace with the weight w([f'(y)]<m
for yeA, then w(X)<<m.

Proof. For any point yeY, let us denote by V, a neighbourhood
of ¥ in Y such that f|f~'(V,) is confluent. Since Y is locally connected
and the weight of ¥ does not exceed m, there exists a base {G,};.s in Y

such that § <m and the set @, is connected and contained in a set V,_
for seS. Let F, be the closure of @, in V, . Thus f|f'(F,) is confluent
(sef8) and it suffices to show that the base B described in the lemma above

has the cardinality B < m. Since m is infinite, it is enough to verify the

inequality &, <<m for seS.

In fact, let us choose a point a;e A N G,. Thus a,eF, and since f|f ! (F,)
is confluent, every set belonging to §, meets f~'(a,). If @, @ ¥, and Q\Q’
# @, then Q\Q'F,, whence Q\Q’ meets f'(a,). It follows that if we
assign to each set Q e, the intersection Q@ N f~'(a,), we get a one-to-one
correspondence between the sets from §, and some open-and-closed subsets
of the subspace f~'(a,). But the space f~'(a,) being compact Hausdorff,
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the collection of all open-and-closed subsets of f~!(a,) has the cardinality

not greater than w[f '(a,)]. Since a,eA, we conclude that 33 <m, and
the proof of Theorem 1 is complete.

Remarks. In this proof, we have utilized the compactness of f~*(y)
for yeA only when estimating how many open-and-closed subsets are
in f~* (y). Instead of compactness of f~'(y) we could as well assume a weaker
condition: namely that f~!(y) is completely regular and the space of quasi-
components of f~'(y) is compact for yeA (see [9], p. 49). We check briefly
the necessity of some other conditions in Theorem 1: the example of the
mapping constructed in [8] shows the condition saying that f is separative
cannot be omitted. The projection of the “double segment” (see [2],
p. 107, Example 2) onto I shows the necessity of the condition saying
that f is locally confluent. The mapping i* in our example above applies
to argue that Y must be assumed to be locally connected. Also, the ine-
quality for the weight of f~'(y) cannot be omitted in Theorem 1 as it is
shown by projection of wD x I onto I, where w.D stands for the Alexandroff
compactification of a discrete uncountable space .D.

COROLLARY 1.1. Let f: X — Y be a separative open-and-closed continuous
mapping of a topological space X onto a locally connected regular space Y.
If w(Y) < m (where Ry < m) and there exists a dense subset A = Y such that
X (y) is a compact Hausdorff subspace with w[f ' (y)] < m for yeA, then
w(X)<m

COROLLARY 1.2. Let f: X — Y be a 0-dimensional open perfect mapping
of a Hausdorff space X onto a locally connected space Y. If w(Y)<m
(where R, <m) and there exists a dense subset A = Y such that w[f~(y)]<m
for yeA, then w(X)<<m.

COROLLARY 1.3. Let f: X — Y be a 0-dimensional open continuous
mapping of a compact Hausdorff space X onto a locally connected Haus-
dorff (infinite) space Y. If there exists a dense subset A = Y such that ' (y)
i8 metrizable for ye A, then w(X) = w(Y).

THEOREM 2. Let f: X — Y be a separative locally confluent continuous
mapping of a reqular space X onto a regular space Y. If Y admits a o-locally
finite base consisting of connected sets and there exists a dense subset A < Y
such that f~1(y) is a metrizable compact subspace for yeA, then X is metri-
zable.

Proof For ye¢X, let V, be a neighbourhood of ¥ in Y such that
fif~*(v,) is confluent. Let {Gm}“s be a locally finite family of connected
setsG cY((=1,2,...)such that the collection {Ggi: se8;, ¢t =1,2,...}
is a ba.se in Y. We can assume that each set G; is contained in a set V
for seS;. Let F; be the closure of G,; in V,,_, and let §,; be the collectlon
of all open-and- closed non-void subsets of the subspace f~'(F;), for seS;
and ¢ =1,2,... Since f~'(y) is metrizable compact for y<4, we have
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wlf ()] < R, for yeA. It now follows exactly in the same way as in the

proof of Theorem 1 that F,; <N, for seS; and ¢ = 1,2, ... Thus we can
write
%si = {Qsiu Qsiz s }7

and, according to the Lemma, the collection B defined by the formula

B = U U {Int@yi;: 88}

i=1 j=

is @ base in X. Since each family {Gy;}.s, is locally finite in ¥, so is {F},.s,.
Hence each family {f™(Fy;)}s.s, i8 locaﬂy finite in X. But we have

IntQy; = @iy = 1 (Fi)

for seS; and 7,j =1,2,... Consequently, the base B is ¢-locally finite.
This yields the metrizability of X (see [2], p. 196), and the proof of Theorem
2 is complete.

Remarks. Like in our remarks to Theorem 1, let us observe that
instead of metrizability and compactness of f~!(y) in Theorem 2 we could
assume only that f~'(y) is completely regular with w[f !(y)] < N, and
that the space of quasi-components of f~'(y) is compact for yeA. Also,
the same four examples mentioned in the remarks to Theorem 1 apply
here to show that each of the corresponding four conditions is essential
in Theorem 2. Finally, let us point out that analogues of Corollaries 1.1-1.3
can easily be formulated as consequences of Theorem 2.

THEOREM 3. Let X be a metrizable space. If X is locally connected
and locally separable, then X admits a c-locally finite base consisting of
connecled sets.

Proof. Since X is metrizable, X admits a o-locally finite base. Let
{Gyi}scs; be a locally finite family of sets G,; = X (¢ =1, 2,...) such that
the collection {G,: se8;,7? =1,2,...} is a base in X. We can assume
that each set G, is contained in a separable subspace of X. Then the
collection of components of G,; is countable; and let C,;,, C,;, ... be all
components of G, ;. Hence

00

(o]
B = U U (Ou: se8)
is also a base in X, and it follows from the inclusion C,; < G,; that the
family {Cy;;}ses, is locally finite in X. Thus B is ¢-locally finite and the ele-
ments of B are connected. |
COROLLARY 3.1. Let f: X — Y be a separative locally confluent con-
tinuous mapping of a regular space X onto a metrizable locally connected
locally separable space Y. If there exists a dense subset A = Y such that
f~'(y) is a metrizable compact subspace for ye A, then X is metrizable.
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COROLLARY 3.2. Let f: X — Y be a separative open-and-closed con-
tinuous mapping of a regular space X onto a metrizable locally connected locally
separable space Y. If there ewists a dense subset A = Y such that f~'(y)
18 a metrizable compact subspace for y e A, then X is metrizable.

COROLLARY 3.3. Let f: X = Y be a 0-dimensional open perfect mapping
of a Hausdorff space X onto a metrizable locally connected space Y. If there
ewists a dense subset A = Y such that f~'(y) is metrizable for yec A, then X
18 metrizable.

THEOREM 4. Let X be a metrizable space. If X is locally connected
and X has a countable closed covering whose elements admit o-locally finite
bases consisting of connected sets, then X admits a o-locally finite base consist-
ing of connected sets.

Proof. Let {C;};2, denote this countable closed covering of X, and
let {Gm}ass be a locally finite family of connected sets G,y < C;
G=1,2, ) such that the collection {G,;: se8;,j =1,2,...} is a base
in C; (1, = 1 2,...). Then the family {Gsu},,sw_ls locally fmlte in X, and
there exist open subsets Vaj = X such that Gy; c Vg, for seS;; and the
family {Pw}seg is locally finite in X (see [2], p. 214). Since X 1s locally
connected, every point ze@,; has a connected open neighbourhood W ()
such that W,(z) = B(z, k') N V,;. Since G,; is connected, so is the
union

Usije = U Wy(x)

xfasi]'

for ¥ =1,2,... It readily follows that
= LJI U U {Usij: 88y}
i=1 j=1k=1

is a base in X. But we have U, < V,; whence the family {ka}s,s
is locally finite in X. Thus B is o-locally finite which completes the proof
of Theorem 4.

P 688. Does each metrizable locally connected space admit a o-locally
finite base consisting of connected sets?

P 689. Suppose f: X — Y is a separative locally confluent contin-
uous mapping of a regular space X onto a metrizable locally connected
space Y such that f~'(y) is metrizable compact for every point ye¥Y. Is X
metrizable”

According to Theorem 2, a positive solution of P 688 would imply
a positive solution of P 689.

Added in proof. Problem 689 was solved affirmatively by T. Przy-
musinski, the solution will appear in one of the next issues of this
journal.
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