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1. It is well known that in various standard cases (real line, Cantor set,
Hilbert cube etc) the Borel hierarchy contains w, different families, i.e.,
Y, € %,+, for each ordinal « < w,, where %, is the family of all open sets in
the ¢onsidered space and

(U %), if a is even,
B<a

1 g =
) (U %) if « is odd,
B<a

where X', and X; mean, as usual, the families of all countable unions and
intersections, respectively, of sets from a given family J. On the other hand,
under Continuum Hypothesis, for each a < w, there exists a subset of the
Cantor set such that for the topology induced on this subset by %, we have

() %y 5%, for f<a
and

3 G =%, =...
(see [4)).

Of course, we can consider the families %, of subsets of a given set X,
defined by formula (1), without assuming that X is a topological space. The
only assumptions we impose on the family %, is that finite unions and finite
intersections of sets from %, are again in %, (by induction, all the families ¥,
possess this property). Also in this general case, by a Borel hierarchy
(generated by a given %) we shall mean the transfinite sequence ¥,,
0 < « < w,, defined by (1) and by its length the smallest ordinal « such that
(2) and (3) hold.
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In this paper, we shall show that the length of Borel hierarchies is
strictly connected with the length of other hierarchies of families of sets.

It is evident that X ,, = X, for an arbitrary family ) of sets. An
analogous property does not hold for the operation of forming unions of
increasing sequences of sets from a given family.

For a given family X of subsets of a set X, let X ; denote the family of

all sets of the form () A,, where A,e X and A, < A4,,,. Put

n=1

(4) s—’”l = -X/I and ‘/ld = (ﬂg -/”p)z
for an arbitrary ordinal « > 0, assuming that the families .#, are defined for
B <a.

If X is an additive family, then we have X 55 = X5 (cf. Theorem 1). On
the other hand, it is not very difficult to construct a non -additive family ¢
of sets such that the families .#, defined above satisfy the relation

(5) H, s H,., for all x<w,
(cf. [3)).

The situation is more interesting if the non-additive family X is
postulated to be hereditary, ie, X = X, where

HAy={AcX: AcB for some Be X}.

If a family X" = #, of subsets of X is hereditary, then the hierarchy
{ #,} generated by X (i.e., defined by (4)) will be called monotone (note that
we can consider the dual hierarchies { .#,} defined by putting .#; = X", and
M, = () M), for a >0, where X is a family such that A > Be X" implies

B <a
ao

AeX and X, consists of all sets of the form () A, with A,e X, A,

n=1
> An+ 1)-

In this paper, we shall show that there exist monotone hierarchies
satisfying (5), i.e., of length w,. The construction used in Section 2 will be
based on the Borel hierarchies of length w,. Namely, given a Borel hierarchy
{4,) in X, we define the hereditary family .#, of all subsets of graphs of
functions f: X — {0, 1} such that f~'(1)e %,. It appears that the monotone
hierarchy {.#,} in Y = X x{0, 1} generated by the family X = .#, is of
length w, if and only if the length of the Borel hierarchy {%,} in X is w, (see
Theorem 3). In particular, if X is the Cantor set and %, is the countable
basis of open -and -closed subsets of X, then we find a countable family ¥
of subsets of Y such that .#, = X, generates the monotone hierarchy of
length w,.

Moreover, we shall show (see Theorem 2) that if the length of the
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hierarchy {¥,} ({.#,}) is known, then the length of the hierarchy {.#,} ({%,})
can be estimated and the difference of the lengths is finite.

Monotone hierarchies appear in connection with extensions of Rényi
probability spaces (see Sections 3—4). It is proved in [2] that a given Reényi
space # can be extended to Rényi spaces #° and #*, whose definitions are
related to the defined above extensions .#, and .#; of a given family .# of
subsets of some set (see Section 3). These extensions can be iterated.
Denoting the ath iteration, 2 < a < w,, of these extensions by #; and %%,
respectively, we have #; = #° and, in general, #* ¢ #¥,, for a« <w, (see
[3D.

In [3], it is shown that the extension é=(ﬂ°);‘,l has the following
property of minimality: & is the smallest Rényi space containing & such that
#° =H# and F* = A.

The results about monotone hierarchies of families of sets allow us to
construct (see Section 3) a Rényi space # such that (#°)* & (#°)¥,, for each
o < w,, i.e. the extensions (#°)¥ for « < w, are not minimal, in general, in
the above sense.

In Section 4, we shall give sufficient conditions for a given Rényi space
# which guarantee that the Rényi space #°* is minimal in that sense.

2. First we shall consider two particular families of sets which generate
the monotone hierarchies of length 1. The second one is observed by
A. Iwanik.

Let )X be a family of subsets of a given set X and let #, = X,.

THEOREM 1. Suppose that 1° X is additive, or 2° X contains only
countable sets. Then M, = M,, ie., (X })s=(N})55

Proof. It suffices to show that if Ae .#,, then A€ .#,. Assume that
a0 a0
AEV‘;, i.e. A= U Ai’ A,‘ c A,‘+1 and A.' = U Au, Where A,_,E.lo and

i=1 j=1
Aij < Ay
If X is additive, then so is #,. Let B,= () A;;, B,e .#,. Since
@ - a i,j<n
B,cB,,, and |J B,= (J 4;;= A, we have Ae #,, as desired.
n=1 i,j=1
To prove the assertion in case 2° note that the set 4 is countable and
arrange its elements in the sequence x,, x,, ... For each ke N there exists an
index i, such that xy, ..., ;€ 4,,;, . Let
Bn = O Aikjk.

Obviously, B, = B,,, and B,e .#,, because .#, 1s hereditary. Moreover

since B,c A and B,> {x,,..., x,}, we have U B, = A. Consequently,

Ae .#, and the assertion is proved.
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Now, let X be a given set and %, a family of its subsets closed with
respect to finite unions and finite intersections. Consider the Borel hierarchy
1%, defined by formula (1). Define another hierarchy putting ), = %, and

H, = (ﬁga ‘*ﬂ)cé’

whenever the families ), for f <a (x > 0) are defined.
It is easy to check, by induction, that

(6) xa+n= Za+2n+1

for any limit ordinal a and n < w,.
Let &, denote the set of all functions f: X— {0, 1} such that
f (e sH,, ie.

Fo =1t AeH,}.

Assuming that ¥ for f < a are defined, we adopt for &, the set of all
functions f: X — {0, 1} of the form

f(x) =limsup f,(x) (x€X),

n—a

where f,e ) &5 for n=1,2,...
p<a

By G(f) for fe %, we shall denote the graph of the function f, i..
G(f) = (x,y): xeX,y=f(x)}.
Put
Mo ={G(f): fe Lol

ie a set AeXx{0, 1} belongs to #, iff A < G(f) for some fe%,.

Let #, be the families of the monotone hierarchy, defined by formula
(4), generated by #,. Obviously, .#, are hereditary.

We shall prove some lemmas about connections between the hierarchies
of the families 4,, ), and .#,.

Lemma 1. If Ae #,, then there exists fe S, such that A< G(f). In
particular, if G(g)e #, for g: X — {0, 1}, then ge &,.

Proof. The first assertion for « = 0 follows from the definition of ..
Suppose that it is true for all ordinals f < a, where « > 0, and let A€ .#4,.
That means there exists a non - decreasing sequence of sets 4,6 |J 4, such

B<a

that 4 = U A,. By the induction hypothesis, we have A, < G(f,) for some
f,€ U 9’,, (n =1, 2,..). Put f =lim sup f,€ #,. Note that if (x, y)e 4, then

(x, y)eA and y = f,(x) for sufficiently large n, so y = f(x) and (x, y)e G(f).
Thus 4 = G(f) and the first assertion is proved for arbitrary a.
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Since the inclusion G(g) = G(f) for f,g: X— {0, 1} implies f = g, the
second assertion follows from the first one.

LemMa 2. If fe¥,, then f~'(1)e¥,.

Proof. For a =0, the lemma is true by the definition of ¥,. Now let
a >0 and assume that the assertion holds for all § <a and that fe %,.
Therefore there exist functions f,e ) &5 such that f = lim sup f,. We have

Bp <a n—*90

f ‘=0 U4

k=1 n=k

and f, '(1)e Y H#; for n=1,2,... Hence f~'(1)e ¥, and the proof is
B <a

completed.
Immediately from Lemmas 1 and 2, we obtain
LEmMMmA 3. Let Ac X. If G(x,)€ #,, then Ac ¥ ,.
On the other hand, we have

Lemma 4. If A€ %,, then G(x,)e M. If Ac K ,,, for a limit ordinal y
and n < Wy, then G(XA)g“”y+2n+l'

Proof. The second statement results from the first one, in view of (6).
The first assertion is true for o= 0, by the definition of .#,. Suppose
that it holds for all f <a (x> 0) and let A€ ¥,.

a
If o is even, then A= () 4,, where A4, ) 4;. Since %, and,
n=1 pf<a

consequently, all %, are closed with respect to finite unions, we can assume
that A, < A,,;. Putting B, =(A°x{0})u(4,x{1}), we have B,<B,,,,

B,<G(x,) and U B, =G(x,)- By the induction hypothesis and
hereditariness of J{ﬂ, we have B,e |) 4, for n = 1,2,..., 50 G(xu)€ #A,,

B<a

i.e. the assertion holds for a.

Ifo =B+1is odd, then A = () A, for A,€%, such that 4, > A4,,,. Let
B

n=1
=(45x{0}))u(4x {1}). We have B,<B,,,, B,<G(x,) and U B,

= G(x,,) Since B,e #y (n=1, 2,..), we infer that G(y,)e #A,, as desued
Now, we shall show mutual relations between the lengths of the
hierarchies {¥,} and {.#4,}.
THEOREM 2. Let ao and P, be the lengths of the hierarchies {%,)}
and | .MA,), respectively. If ag = y+n, where y is a limit ordinal and n < w,,
then

(7 7+k < Bo < ap
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where k = [n/2]). If Bo =7+ m (ie, k < m < n), then
(8) ﬂo<a0<ﬂ0+m+l.

Proof. First we shall show that B, < ay, ie.,
© Mysr = My,

Suppose that A€ .4, +,- By Lemma 1, 4 c G(f) for some fe S, +1. In
turn, we have f =y, for Be ¥, ., =%,,, in view of Lemma 2 and (6).
Hence, by Lemma 4, G(xp)€.#,, and thus Ae H#, , because A, is
hereditary. Equality (9) is shown.

To prove the inequality y+k < B, suppose that .#, ., = .#, where

1°B=y+k—-1if k=1 or

2 B=y+l<y (y is a limit ordinal, I < wy) if k = 0.

Putting ' = y+n—1in case 1° and ' =y +2I+1 in case 2°, we choose
a set Ae¥,, \%;. By Lemma 4, G(y,)€.#,, = #; which yields A€ ¥,
due to Lemma 3. But we have

Hp=% 0-1<%4n-1=%

ag?

in case 1° and -
Hy=%y .01 =%

in case 2°. This means the relation Ae ¥, implies Ae%; which is
impossible. The contradiction proves that 4 ,,, # #, for any f < y+k, i.e.
y+k < Bo. Thus inequality (7) is proved.

Now, let B, =y+m and assume that A€¥; ,n:,. By Lemma 4,

G(XDEMpyrm+2 = "lpo

whence

Aexﬁo = gﬂo+m+l’

by virtue of Lemma 3 and (6). Thus we have proved the relation %5 4 pm+
= %p,+m+2, Which means that ay < Bo+m+1, so inequalities (8) and the
theorem are proved.

As an immediate corollary to Theorem 2, we get

THEOREM 3. The length of the Borel hierarchy {%,} is w, if and only if
the length of the monotone hierarchy { M,} is w,.

Remark 1. Together with the Borel hierarchy {%,}, generated by the
family of all open subsets of a given X, defined by (1), another hierarchy is
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usually considered by letting for &, the family of all closed subsets of X and
{(U F;); if a is odd,
F =

(U #4), if ais even

p<a

(10)

for a > 0. Of course, the hierarchy {#,} defined by formula (10), where &, is
an arbitrary family of subsets of X, closed with respect to finite unions and
finite intersections, is a Borel hierarchy in the sense of Section 1. It suffices to
put ¥, = #,. Conversely, given a Borel hierarchy {%,}, by putting #, = ¥,
we get the hierarchy described by (10).

Remark 2. It is worth noting that exactly the same construction of
the monotone hierarchy in Y = X x {0, 1} as above can be repeated if the
induction definitions of the sets S, and J, are modified in some way.
Namely, we can assume that feS, iff f(x) = lim inf f,(x) (xe X) for some

n—a
functions f,e |J S (n=1,2,..) and

B <a
X, = (ﬂL<) xﬂ)«’a'

Remark 3. If X is the Cantor set and %, is the countable basis of
open-and -closed sets in X, then

H ={G(yr,): Ac%,)

is a countable family such that the monotone hierarchy {.#,} generated by
My = X, has length w,.

Remark 4. Note that Lemmas 1-4, Theorems 2, 3 and Remarks 2, 3
are true for monotone hierarchies |.#), dual to {.#,}, defined by setting
My =K, and M, =(\) M), for some family ¢ fulfilling the condition:

B <a

A > Be X implies Ae. X (see Section 1). Namely, it suffices to consider
complements of the sets used for the families in the hierarchies {.#,} and the
respective assertions follow from the facts proved above.

On the other hand, let us notice that Lemmas 1-4 and all their
consequences formulated for a hierarchy {.#;} can be proved immediately, if
we take for [ ..} the hierarchy generated by the family:

Mo ={AeX x{0,1}: A>G(f) for some feIH,).

3. Now, we shall give the definition of Rényi spaces, being a general-
ization of the classical probability spaces of Kolmogorov, and recall some
facts concerning extensions of Rényi spaces.

By a Rényi space we shall mean in this paper a system 2%
=[Q, o/, B, P], where Q is an arbitrary set, o/ is a o -algebra of its subsets,
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2 is a non-empty subfamily of o/ and P(-|-) is a mapping from o/ x & into
[0, 1] (conditional probability) such that P(-|B) is a probability measure on
&/ for each Be # and moreover
(1) P(B|B) =1 for Be4#,;
. P(A nB|B))
(i) P(A|B) = P(BIB)
P(B|B)>0; . _
(iii) P(A,|B,): P(A,|B,;) = P(A,|B,)- P(A,|B,) for A,, A,e o/ and B,,
B,e # such that A, U A4, < B, nB, (cf. [5], pp. 289, 291, [6], p. 70).

Let us formulate some properties of Rényi spaces, following immediately
from the definition:

(11) P(A|B) = P(A|B) - P(B|B)
for Aeof and B, B'e # such that A < Bc B’;

“whenever Aesf; B,Be#;, BcBHB,;

n—1
P(B,|B,) = l_—ll P(B;|B;.,)

for B,, ..., B, 2 such that B, — ... < B,;

(12) lim P(AN A,|B)= P(An | A4,|B)
n—a n=1
for A, A,e o/ with A, c A4,+, aqd Be %#;
(13) lim P(B,|B,) = [] P(B;|B;.,)
n—oo i=1

for B,e # such that B; = B;,, (cf. [S] and [2]).

From the definition of Rényi spaces it also follows that @¢ #, so the
family # is not multiplicative. On the other hand, # need not be additive, in
general.

In a given Rényi space #, the following two types of extensions of the
family # (by adding sets from .o/) can be considered.

Let #° denote the family of all sets B°es/ such that B° c B,
P(B°|B) > 0 for some Be #, and let #* be the family of all sets of the form

U B,, where {B,} is a #-increasing sequence, ie. B,e¢ #, B,< B, for n
=1 .

=1,2,... and
I1 P(Bi|Bi+y) > 0.
i=1

We define a conditional probability for the extended families #° and #*

as follows:
(14) P°(A|B°)=w

oS, B°e #°
P(BO|B) (Ae ’B € )’
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where Be #, B° < B, P(B°|B) > 0, and

(15) P*(A|B*) = lim P(A|B,) (Aed, B*e#*),

n—

where B* = |J B, and |B,) is # -increasing.

n=1 .

It is proved in [2] (Theorems 3.2 and 5.3) that definitions (14) and (15)
are consistent and the systems #°=[Q,., #°, P°] and #*
=[Q, o, B*, P*] are Rényi spaces containing # (i.c. # — #°, # c #* and
P°P=P*=P on o xB).

Extensions of Rényi spaces can be iterated. Put #f = #* and let a be
an ordinal greater than 1. Assume that #} are Rényi spaces for each f <«
such that #§ c #f., for f+1<a (ie. #f < #f,, and P§=P§,, on
./ x #}). Note that the system #, = [2, o, #,, P,], where #, = ) #5, P,

B <a
= P} on .o/ x B}, is a Rényi space. We define #F = [Q, o/, #7, P¥], where
AB¥ =(#4,)* and P¥ =(P,)*. By Theorem 5.3 in [2], #¥ is a Rényi space.

It can be proved that the system # = A% is the smallest Rényi space
containing # such that #* = # (see Theorem 5.6 in [2]).

On the other hand, we have #°° = #°, ie. #°° = #° and P°° = P° on
o x #° (see Theorem 3.2 in [2)).

In [3] (Theorem 2), it is shown that # = (#°);, is the smallest Rényi
space containing # and invariant with respect to both the operations of
extensions: #° = # and #* = 2.

Applying the results of Section 2, we shall prove that the Rényi space
(#°) for « < w; has not the above property, in general. Namely

THeoReM 4. There exists a Rényi space #® such that
(H)F & (H)F41

Jor each ordinal a, 1 < a < w,.

Proof. Let X=[0,1]and Y = Xx {0, 1}. Let X be the family of all
graphs G(f) = Y of functions f: X — |0, 1] such that f~'(1) is an open set
in X. Since the hierarchy of Borel sets in [0, 1] has length w,, the monotone
hierarchy {.#,}, generated by #, = X, is also of length w,, in view of
Theorem 3. That means

(16) MG My

for each a < w,.

Let 7 be the family of all Borel subsets of X =[0, 1] and let A be the
Lebesgue measure on %. Let %, < % be the family of all Borel subsets 4 of
X such that A(4)>0. Put Q=X0Y, S ={4cQ:. AnXe%}, &
=BcQ: B=XuD,DeX) and P(A|B) = A(An X) for any Ae.</ and

2 — Colloquium Mathematicum 51



18 B. ANISZCZYK ET AL.

Be 2. Note that Xn'Y =@ and P(-|B) is a probability measure on &f for
each Be #. Moreover,

P(AnB|B) A(ANBNX)
P(B|B)  A(BNnX)
for Ae o and B, B'e # such that B< B’, and
P(A,|B)-P(A,|B) = (A, n X)-A(4; " X) = P(A4,|B,)-P(A4,|B))

for A,, A,e o and B,, B, e # such that 4, UA, < B, UB,. This means the
system R =[Q, o/, #, P] is a Rényi space.

Let #% = #° and #* = (#°)* for « > 1. Moreover, let P4 = P° and P*
= (P°)¥. To prove the theorem, it suffices to show that

(17) Q* g a+l

for all @, 0 <a < w,.
We shall show that

= A(An X) = P(A|B)

(18) Be#* iff B=CuD, where Ce%,, De A,
and

A(A
(19) Pra1By =429 (o any Aeos and Bed?.

4(C)
First note that B°e %% =#° iff B°=CuD for some Ce%, and

De .#,. Moreover,

AMANB°nX) AANnC)

P(4]B) = ABnX) A0

for Ae .
Suppose now that a 1 and let (18) and (19) hold for all § < a. Assume

that Be #*, ie. B= U B, for some &,-increasing sequence {B,}. By
induction hypothesis, we have B,=C,uD,, where C,€%é, and D,e ) 4,
forn=1,2,. OfcourseC—BnXandD =B,NnY, soCCC,,iTand
D,cD,,,. Putting C = U C,and D = UID,, we have B=CuD, Ce¥,
and

l)E(ﬂLj¢ "lﬂ)I =N

Now, suppose that B = Cu D, where Ce %, De #,,and let D= ) D,
=1
for an increasing sequence of sets D,e |) #,. Put B, = CuD,. Of course,

f<a



RENY!I PROBABILITY SPACES 19

an
B,c B,,, and {J B, = B. Moreover B,e ) #} =%, and
=1 B<a

A(ANC)

P,(4|By) =70

for Aesd,

by induction hypothesis. Hence [] P,(B,|B,+;) =1, because A(B,n C)
n=1
= A(C) = 1. Consequently, Be(#,)* = #* and

P2 (41B) = tim P,(418) =~ 52,

which completes the proof of (18) and (19).
Relations (16) and (18) imply (17) and the proof of the theorem is
finished.

4. We shall give in this section, for Rényi spaces of a special type, a
condition guaranteeing that #°* is the minimal Rényi space invariant with
respect to the extension operations ° and *.

First note that

(20 A* = AH°*

for an arbitrary Rényi space . In fact, we have, in general, #°* — #°*° (see
[2], Theorem 3.2) and, on the other hand,

T I = R,

in view of Theorem 1 in [3] and Theorem 3.2 in [2].
The equation

1) A = R

does not hold, in general, as Theorem 4 shows. It does under additional
assumptions.

Following A. Csiszar [1], we say that the Rényi space &
=[Q, o, B, P] is generated by the ordered (with respect to dimension)
family {u,} of (non-negative, bounded or not) measures on o if

1° indices a form a linearly ordered set,

2 if Aesf, p,(4) < o and a < B, then pz(A4) =0,

3° for each a there exists a Be # such that 0 < y,(B) < o,

4 if Acof, Be® and 0 < u,(B) < oo, then

1.(AN B)
W(B)

In particular, a Rényi space # = [Q, o/, B, P] is generated by one (non -

P(A|B) =
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negative, bounded or not) measure u on o if 0 < u(B) < oo for Be # and

p(A N B)

PUAIB) =—®

for every Ae . and Be #.

In [1] (Theorems 3.3 and 3.5), it is proved that a Rényi space #
=[R2, <, B, P] is generated by an ordered family of measures on ./ iff #
fulfils the condition:

l_[ P(Aile) = l_[ P(Ai|Bi+l)
i=1 =

i=1

for arbitrary n=1, 2, ... and sets A,e ¢, B;e # such that 4A; < B, B, for
i=1,2,..., n where B,,, = B, (cf. condition (ii)).

Remark 5. Conditions 1°-3° imply that for each Be # there exists
exactly one index a such that 0 < u,(B) < co.

Remark 6. If # =[Q, o/, #, P] is generated by the ordered family
‘u,) of measures on ./, then #° =[Q, .o/, #°, P'] is also generated by |u,,.
Moreover, if B°e #°, Be #, B° < B and P(B°|B) > 0, then 0 < y,(B°) < o iff
0< u,(B) < .

In fact. Suppose that 2 fulfils 1°4°. If 0 < u,(B) < oo then w,(B°)
< u,(B) < oo and

Yo (B°)
Ma(B)’

so 0 < u,(B°) < oo and the first implication is shown. Moreover, this means
that #° satisfies conditions 1°-3°. Hence, in view of 3° the implication just
shown and Remark 5, we have also the converse implication. It remains to
see that if 0 < y,(B°) < oc (which yields 0 < y,(B) < ), then

0< P(B°|B) =

P(ANB°|B) (AN B°)
P(B°|B) =~ i (B°) ’

P°(A|B°) =

ie. #° fulfils condition 4° too.

Remark 7. ' If # =[Q, o, B, P] is generated by the ordered family
(1) of measures on &, then #* = [Q, o/, #*, P*] is also generated by {4,).

Q0
Moreover, given a set B* = (J B,e #* where {B,] is a #-increasing
: n=1

sequence, we have 0 < y,(B,) < o for all n=1, 2, ... iff 0 < y,(B*) < .
To show this note first that if {B,} is a #-increasing sequence and 0
< My, (By) < x, then a; =a; =... = 0. Indeed, if a, > a,,, for some n, then

Mo, (By) < g (Busy) =0
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and if a, < a,,,; for some n, then

® © 4, (B)
[T P(B.Basy) = ] :

_ =0
n=1 n=1 #‘n+l (Bn+l)

and both cases are impossible. Thus to every 4 -increasing sequence {B,}
there corresponds exactly one index a such that

(22) O<uy,(B)<x forn=1,2,...
(cf. Remark 5).
a
Now, if B* = {J B, for a #-increasing sequence |B,] satisfying (22),

n=1

then also 0 < y,(B*) < oo, since the condition

- . Ma(By)
0< P(B,|B,.;) = lim
"I;[l (BalBn+1) T
(cf. (13)) implies u,(B*) < co. This means #* fulfils conditions 1°-3°. In turn,
if 0 < u,(B*) < o0, then 0 < y,(B,) < oo for n=1, 2, ..., in view of 3° and
the above observations. It remains to notice that 0 < u,(B*) < oo implies, for
each Ae ./, the relations

e . W(ANB)  p(ANBY)
PrdBs) = im PUAIB) = I =B m(B)
1.e. 9#* satisfies condition 4°, too.
Now, we formulate conditions for Rényi spaces to fulfil identity (21).
THEOREM 5. Suppose that the Rényi space R =[Q, o/, B, P] is
generated by the ordered family {u,} of measures on </ and, moreover, the
family 2 fulfils the following condition of completeness:
(c) if Be#, Bc Ae 4, 0 < u,(B) < o0 and p,(A\B) =0, then Ac A.
Then R satisfies (21).
In particular, if R is generated by one measure p on .. and
(c) Be®#, Bc Ae A, u(A\B) =0 imply Ac A,
then R satisfies (21).
In the proof of the above theorem we shall need the following lemma:
LEMMA 5. Let ® =[Q, o, 2, P] be a Rényi space such that # = #°.
If we have

(23) B = D Bf,

where {B¥) is a #B*-increasing sequence, then there exists a #-increasing
sequence {B;} such that

(24) B, < B*
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and
(25) lim P*(B;|Bf) = 1.

i—a

Proof. Suppose that (23) holds for some #* -increasing sequence {B¥}
and let {c;} be a given sequence of numbers such that 0 <¢; <1 and ¢;— 1.
Since {B}} is #*-increasing, we have

P**(BY|B) = [] P*(B?|B#.,) > 0,
i=1
by (13). Let ¢ be a positive number such that
P**(B%|B) > ¢.

Since Bfecd*, there exist #-increasing sequences {B;;};_,, . for i
=1, 2, ... such that

(26) By = ,DI B,.
We shall construct, by induction, indices k,, k,, ... such that
(27) P*(B,,N..-NB,, |Bg) >¢, for m<n
and
(28) P**(Byx, N...N By, |B) >¢.

By (26) (for i = 1), we have
P*(B,;|Bf)—»1 and P**(B,;|B)— P**(Bf|B)

as j— oo. Thus there exists a k, such that
P*(By,,|BY) >c¢, and  P**(B,,,|B)>¢,
i.e. (27) and (28) hold for n = 1.

Assume that we have constructed indices k,, ..., k, satisfying (27) and
(28). Due to relations (26) (for i =n+1), (12) and

By, N .--N By, < B,< B,.;,

we have
P*(B,. 1.k|B:+'1)—’ 1,

(29) P*( N Bp,kpm B,. 1.&'3:)_’ P*( N Bp.kplB:n)
p=m p=m
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for m < n, and
(30) P**( O B,,',‘pn B,. x| B)— P**( (_] BMPIB)

as k — o0. Since the limits in (29) and (30) are greater than c,, (for m < n) and
¢, respectively, and since 1 > c,,,, we can find an index k,,; such that (27)
and (28) hold for n+1 and m < n+1.

Now, let B;=B;; N Biy14,,Nn..- We have B,c B, c B, so (24)

holds and, by (11) and (27),
(31) P(B;|B;,) = P*(B;|B) = ¢; > 0.
Hence B;e #4° = #. Moreover, B, < B;,, and
P(B,|B,) > P*(B,|B) > ¢
by virtue of (11) and (28), so
[] P(B1B..) = lm P(,18)>0.

[ g

This means {B;} is a 4 -increasing sequence such that relation (24) and,
which is a consequence of (31), relation (25) hold.
Thus the lemma is proved.

Proof of Theorem 5. Suppose that & fulfils (c). We shall show first
that also the familiess #° and #* satisfy (c).

Assume that B°e #°, B° € Ae o, 0 < u,(B°) < oo and y,(4A\B°) = 0. By
Remark 6, there exists a set Be # such that B°< B, 0 < y,(B) < oo and
Ha (B°)

Ha(B)
Since u,((A v B)\B) < p(A\B°) =0, we have AU Be®, by (c). Moreover,

0< u,(AuB) =y, (B) < ©

0< P(B°|B) =

and

W(4) _ (B°)
H(AVB)  y(B)

P(4A|AUB) = > 0,

so Ae#@°. This means that #° fulfils (c).
Now, assume that B*c #*, B* c Ae o4, 0 < ,(B*) < 0, u,(A\B*) =0

and B* = U B; for a 4 -increasing sequence {B;}. By Remark 7, we have 0
<p,(B)< oo for alli=1, 2, ... Denoting C = A\B®* and A, = B,u_, we
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see that A4,e #, by virtue of (c). Moreover, 4; < A;,, and

ﬁ P(A;|4;, ) ﬁ K (B)) _#a(Bl)

; = = > 0.
i=1 i=1a(Bivy)  H(B¥)

This means {A;} is #-increasing. Since, additionally, (J 4; = A, we infer

i=1
that Ae #*, so #* fulfils (c).
In view of the above observations, it suffices to prove the equality
(32 B* = B**

under the assumptions that B = #° and .#* satisfies (c).
Suppose that Be #**, i.e. (23) holds for some #* -increasing sequence
‘B*!. By Remark 7, we have 0 < p,(B¥) <o (i=1,2,...) and

(33) 0< u,(B) = lim p,(B¥) < ©

i—oo
for some x. By Lemma 5, there exists a # -increasing sequence {B;} such that

(24) and (25) hold, i.e, U B; < B and
i=1

fim ta(B)
.-xuu(B"‘)

Hence, by (33), y,(B) = lim y,(B;) or, equivalently,

i~w®

w(8\ U B)=0.

Since U B;e #* and #* fulfils (c), we conclude that Be #*. Consequently,

(32) holds and the theorem is proved.
In view of (20), we obtain the following consequence of Theorem 5:

COROLLARY. Suppose that R is generated by the ordered family |u,) of
measures (by one measure p) on o/ satisfying condition (c) (condition (c’)). Then
A°* is the smallest Rényi space such that # — R°*, (#°*)° = RA°* and (A°*)*
= H°*,

Remark 8. Note that an arbitrary Rényi space # =[Q, o/, #, P]
generated by the family {u,) of measures on . can be extended to a Rényi
space (generated by |u,)), satisfying (c). Namely, we can define the family #,
of all sets B, such that B< B,, 0 < u,(B) < oo and y,(B.\B) = 0 for some a
and Be 2. Moreover, put

ta(ANB) (AN B)

A|B) = =
PAlB)=="8) = w®
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It is easy to see that &, =[Q, o/, #., P.] 1s a Rényi space generated by
{1, ), for which condition (c) holds. Another example of such an extension is
the Rényi space # = [, o, #, P}, where # consists of all Be.o/ such that
0 < p (B) < o for some « (by 1° and 2°, a is the unique index with this
property) and P is defined by the formula

< < (AN B)
P(A|B) = ——=—
(A|B) PRT:)
for Ac./ and Be ®.
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