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1. Introduction. There is a well-known theorem of Borsuk [1]
which asserts that a Peano continuum has the fixed point property if
and only if each cyclic element of the continuum has the fixed point
property. A proof for the slightly more general case of a semi-locally
connected continuum can be found in [9]. The interesting half of this
theorem (extending the fixed point property from the cyclic elements
to the whole continuum) depends very strongly on the ,acyclic” structure
of the set of cyclic elements. Now it happens that this acyclic structure
is reflected in a natural partial order possessed by all connected spaces,
and the use of this partial order permits a proof of Borsuk’s theorem in
a somewhat more general setting.

In establishing this generalization we shall also widen the class of
mappings under consideration. Our results will be stated for the class
of all upper semicontinuous, continuum-valued mappings which possess
a property Q which is preserved when the maps are composed with order-
-preserving retractions. This degree of generality will permit us to infer
as corollaries several previously known results.

It is a pleasure to acknowledge my great debt to Professor A. J. Ward
of Emmanuel College, Cambridge, for several corrections and improve-
ments upon the original manusecript of this paper.

2. A class of partially ordered spaces. Let X be a Hausdorff space.
A partial order < on X is continuous if its graph is a closed subset of
X x X. The space X, together with a continuous partial order, is termed
a continuously partially ordered space. We also define

L) ={yeX:y <=}, M()={yeX:2 <y},
Cx) ={yeX: M(x) ~ L(y) = {z, y}},
for each ve¢X. If A <« X it is convenient to write

L(4) = U{L(x):zed}, M(4)= U{M(z):zed}.

* This research was supported by the National Science Foundation.
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For the continuously partially ordered spaces it is known [6] that all
of the sets L(x) and M (x) are closed, as is each maximal chain of X. More-
over, if X is compact, then X contains maximal and minimal elements.

We shall be especially concerned with partially ordered spaces satis-
fying the conditions

(i) of @, yeX, then the set L(x) ~ L(y) 18 @ non-empty compact chain,

(ii) if weX, then the sets M(x) — {«} and M (C(x)— {x}) are open.

(iii) ¢f xe X and if F is a closed subset of C (x), then M(F —{x}) « {x}
is closed.

Note that if X satisfies (i), then M (x) and M (y) are disjoint when-
ever x and y are non-comparable elements of X. Further, if X is com-
pact, then X contains a zero i.e., an element 0 such that M (0) = X.

The sets C(x) are, roughly speaking, order-theoretic analogues of
the cyclic elements of a continuum. In this section we establish a few
of their elementary properties.

LEMMA 1. If X is a continuously partially ordered space satisfying (ii)
and if xeX, then C(x) is a closed set.

Proof. Let ye X—C(z). Since C(x) ¢ M(x) = M(x) it is clear that
yeX—C(x) if yeX—M(x). On the other hand, if yeM(x)— C(x), then
there exists zeX such that r < 2 < y. By (ii), M (2)— {2} is an open set
containing vy, and by definition M(2)— {2} and C(x) are disjoint.
Therefore y e X — C(x) and thus C(x) is a closed set.

The next lemma is implicit in a result from [8], but we include a proof
here to make the treatment as self-contained as possible.

LEMMA 2. If F i8 a compact subset of the continuously partially or-
dered space X, then M (F) is a closed set.

Proof. If yeX — M (F'), then for each weF there are disjoint open
gsets U, and V, such that (z,y)eU, XV, ¢ X X X—TI', where I" denotes
the graph of the partial order. Since F' is compact, it is covered by finitely
many of the open sets U, say by Uz, ..., Ug,. If

V= VaymoonVayy U=TUgvov U,

then
FXVcUXVecXxX-T,

that is to say, V ~ M(F) is empty. Since V is a neighborhood of v, it
follows that M (F) is a closed set.

If A and B are partially ordered sets, then a function f: A — B is
order-preserving provided f(a,) < f(a,) whenever a, < a,.

LEMMA 3. If X is a continuously partially ordered space satisfying
(i), (ii) and (iil), and if xeX such that C(x) is compact, then there exists an
order-preserving retraction py: X — C(x).



FIXED POINT THEOREM 2456

Proof. Let p,(y) =y if yeC(x). If ye X — M (x), or if yeM (x)— C(x)
and there is no te C(x) — {«} such that ¢ < y, let p,(y) = =. If there exists
tyeC(x)— {x} such that ¢, <y, then by (i) and the definition.of C(x),
the element ¢, is unique and we define p,(y) = t,. It is easy to verify
that p, is order-preserving, so that it remains only to show that p, is
continuous. This is obvious if C(x) = {x}, so we assume that C(x) is non-
-degenerate and let F be a closed subset of C(z). If x¢F, then p;!(F)
= M(F), which is closed by Lemma 2. If z¢F, then

Pz (F) = [X—[M(C(2)— {a})] — [M(F—{a}) v {=}].

By (ii) the set X —[M(C(x)— {wx})] is closed, and by (iii) the set
M(F— {x}) v {z} is closed. Thus p;'(F) is closed so that the continuity
of p, is established.

LeEMMA 4. Let X be a compact, continuously partially ordered space
satisfying (i) and let xeX. If ze M(x)— C(x), if there is no teC(x)— {x}
such that t < z, and if U is a neighborhood of x, then

(M(z)—{x}) ~ L(z) ~ U
18 mot empty.

Proof. The lemma is obvious if ze U. Otherwise, since X is compact

and the partial order is continuous, the set

K = (M(@)~ L(z))—U
is compact and non-empty. Because xe U we may write
K = (M(x)—{z}) ~ L(2)—U.

The set K is also a chain, and therefore K has a zero, y. By
hypothesis y¢C(x) and hence there exists weX such that * <w < y.
Since y is minimal in K, it follows that we U and hence

we(M(x)—{=}) ~ L(z)~ U.

3. The fixed point theorem. Let ¢ be a property of set-valued
functions. If Y is a set, then Q(Y) denotes the family of all set-valued
functions from Y into ¥ which possess the property Q. If ¢ is a set-valued
function and F is a family of set-valued functions all of whose ranges
lie in the domain of g, we define

gF = {gf : feF},

i.e., the family of all compositions of ¢ with members of F. Similarly,
if the range of g lies in the domain of each member of 7, we write

Fg ={fg:feF}.
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Now suppose X and Y are spaces and that f: X — Y is a set-valued
function. Then f is said to be wupper semi-continuous (hereafter, u.s.c.)
provided each point image f(x) is a closed set and, whenever U is an
open set containing f(z), there exists an open set V containing x such
that f(f) = U for each teV. Finally, if F' is a family of set-valued func-
tions from Y into Y, we say that Y has the fized point property for F
(or, simply, the F-f.p.p.) provided for each fe F there exists at least one
yeY such that yef(y).

The next lemma is an obvious generalization of the well-known
proposition that the fixed point property (for single-valued mappings)
is a retraction invariant. Lemma 6 is also trivial, and the proofs are
omitted.

LEMMA 5. Let Y be a set, let B < Y and let 0: Y — B be a function
suth that o | B s the identity. Let  be a property of set-valued fumctions
and suppose Y has the Q(B)o-f.p.p. Then B has the Q(B)-f.p.p.

LEMMA 6. Let X and Y be spaces and let g: X — Y be a closed con-
tinuous function. If f: X — X is a set-valued function which i w.s.c. (has
connected point images), then gf is u.s.c. (has connected point-images). Simsl-
arly, if f: Y — Y is u.s.c. (has connected point images), then fg i8 u.s.c. (has
connected point tmages).

LEMMA 7. Let X be a continuously partially ordered space with zero
and let f be a u.s.c. set-valued map of X into itself with compact point-
tmages. Then the set

P ={xeX:f(x) n M(x) is non-empty}

18 closed and mon-empty.
Proof. Let 0 be the zero of X; then f(0) ~ M(0) = f(0) is non-
empty so that P is non-empty. If x¢ X —P, then

@} xf(@) « XXX T,

where I' denotes the graph of the partial order. Since I'" is a closed set,
the compactness of f(x) insures the existence of open sets U and V such

that
{#} Xf(#) « UXV « XX X-—-T,

and since f is u.s.c., we may choose U so that f(t) = V for each te U. There-
fore U <« X —P so that P is a closed set.

LEMMA 8. If X, f and P satisfy the hypotheses of Lemma 7, and if,
wn addition, X is compact, then P contains a mawximal element.

Proof. By Lemma 7, P is closed, hence compact. As noted in sec-
tion 2, such a set has a maximal element.
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THEOREM 1. Let X be a compact, continuously partially ordered space
satisfying (i), (i) and (iii), and let Q be a property of u.s.c. mappings with
connected point-images, and which is preserved under composition with order-
preserving retractions. Then X has the Q(X)-f.p.p. if and only if each
set of the form C(x) has the Q(C(w))-f.p.p.

Proof. Suppose X has the Q(X)-f.p.p. and zeX. By Lemma 3
there exists an order-preserving retraction p, of X onto C(x). By hypo-
thesis and Lemma 6, Q(C(x)p, < @(X). Therefore, by Lemma 5, C(x)
has the Q(C(w))-f.p.p.

Now suppose each set C(x) has the Q(C(m))-f.p.p., and let fe @ (X).
By Lemma 8, there exists x, ¢ X, maximal with respect to f(z,) ~ M(x,)
being non-empty. If x, ¢f(x;) the proof is complete, 50 we assume z,e X —
—f(x,). Since M (x,)— {x,} is open, @, is a cutpoint; and since f(x,) meets
M (x,), is connected, and does not contain z,, it follows that f(x,) =
c M(x,)— {x,}. If C(x,) = {x,}, or if there exists 2,¢f(x,) and there is
no teC(xz,)— {x,} such that ¢t < z,, then by Lemma 4 there exists y, such
that z, < ¥, < #?, and vy, lies in the open set X —f(x,). Let U denote the
open set M (y,)— {y,}. Again, since f(x,) meets U but does not contain
Y., it follows that f(x,) = U. By the upper semi-continuity of f, there
exists a neighborhood V of #, such that f(t) =« U for each t¢V. By Lem-
ma 4 there exists

yz‘(M(wl)_{‘”l}) ~L(y)~ V.

Thus f(y,) meets M (y,), contrary to the maximality of x,. Hence C(x,)
is non-degenerate and either f(x,) = C(x,)— {z,} or, for each yef(x,)—
—C(w,), there exists teC(z,)— {x,} such that ¢ <y. Letting p; = ps,
be the retraction of Lemma 3, it follows from these asumptions that
z,¢p.f(x). From Lemma 6, the mapping (p.f) | C(x,) is a member of
Q(C(x,)) and hence there exists

aep.f(a) ~ (C(z)— {z}).

Now pir'(a) = M(a), so that f(a) ~ M(a) is non-empty, contrary
to the maximality of x,. Therefore z,¢f(x,) and the theorem is proved.

4. Application to semi-locally connected continua; Borsuk’s theorem.
A continuum is a compact, connected Hausdorff space. A connected space
is said to be semi-locally connected (hereafter, s.l.c.) provided each point
is contained in arbitrarily small open sets whose complements have
finitely many components. The s.l.c. continua are discussed in [9] where
it is shown that every locally connected continuum is semi-locally con-
nected. We recall also that if Y is an s.l.c. continuum and if z, ¥ and 2
are elements of Y such that z does not separate x and y, then x and v



lie in a subcontinuum N such that ¥ = Y — {z}. (Although these results
are stated for metrizable continua, the extension to the non-metrizable
gitnation offers no difficulty.)

Every connected topological space admits a natural partial order
which has been termed the cutpoint order [6]. In such a space, fix a point
0 and define z < y if and only if # = 0 or = y or x separates 0 and y.
It is a simple matter to verify that this cutpoint order is, in fact, a partial
order.

THEOREM 2. If X is an 8.l.c. continuum, then the cutpoint order on
X i8 continuous and satisfies (i), (i) and (iii).

Proof. Let I' denote the graph of the cutpoint order with minimal
element 0, and suppose (z, y)eX X X —I'. Then there exists a continuum
N with {0,y} « N <« X—{r}, and hence there exists an open set U
such that 2eU <« X—N, yeX—U, and X--U has finitely many com-
ponents, C,, Cy,...,Cp, with N < C,. Now each of the sets C,,...,C,
is closed and hence there is an open set V such that yeV < C,. Now if
v'eUandy’ eV,wehavexeX—C,, {0,y'} =« Cyand thus(z’, y')e X X X —T.
Thus I' is a closed set, i.e., the cutpoint order is continuous.

It is known [6] that each set L(x) ~ L(y) is a non-empty chain.
Further, for each x¢X, consider all decompositions of the form

X—{z} = A, v B,

where A, and B, are separated sets and 0eA,. Then M (x)— {z} is pre-
cisely the union of the sets B, and hence M (z)— {x} is open. To complete
the verification of (ii) we note that if C(x) = {w}, then M (C(z)— {z})
is empty and hence open, so it remains to show that M (C (m)—{m}) is
open when C(x) is non-degenerate. If y ¢ M (C(x)— {x}) — C(w), then there
exists y, eC(z)— {«} such that y; < y and hence the open set M (y,)— {y,}
contains y and is contained in M (C(z)— {x}). Therefore we need only
show that if yeC(x)— {r}, then some neighborhood of y lies in the set
M (O(2)— {z}). ~

Let R be a neighborhood of x such that yeX—R and X— R has
finitely many components. If K is that component of X — R which con-
tains y, then there is neighborhood 8 of y such that § <« K —R.

We note that § =« M (z). For if not there is a point teS and a con-
tinnum M which contains 0 and ¢ but which does not contain x. But
then K v M is a continuum containing 0 and ¥ but not , and this con-
tradicts the hypothesis that z < .

Now suppose there exists teS— M (G(w)-{w}). Since te M (x)— {x},
the set L(t) ~ (M(x)—{x}) is a non-empty chain. If

L(t) ~ (M (2)—{z}) <« X—E,
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then
L(t) ~ (M(x)—{2}) = (L) ~ M (v))—R

which is compact and hence has a zero zyeC(x)— {z}. But this implies
te M (O(x)— {}), contrary to the hypotheses. Hence there exists an
element 2z, e R such that # < z;, < {. Since M (z,) is closed and M (2;)— {2}
is open, the point 2z, separates t and y. And since K is a connected set
containing ¢ and y, we conclude that #z,¢ K, and hence that K ~ R is non-
empty. But K was defined to be a component of X — R. Therefore the
open set 8 is contained in M(C (z)— {z}).

To establish (iii) let ' be a closed subset of C(z). The result follows
at once from Lemma 2 if z ¢ F', 8o we assume z e F and suppose there exists
a point 2 in the closure of M (F — {z}) v {x} but not in M (F —{x}) v {x}.
If 2¢C(x), then there exists ¢ such that # <t<<z and M(t)— {t} is an
open set containing x. If t¢ F, then M (t) — {t} is disjoint from M (F — {x})
v {x}, contrary to the assumptions on z. If te¢F, then ze¢ M (F — {x}).
Thus we may assume zeC(x).

Let 2, be a net in M (F — {x}) which converges to 2z, and let z, <z,
with x,e F — {x}. Without loss of generality we may assume that x, con-
verges, say, to y ¢ F'. By the continuity of I', y <2 and, since L(z) ~ C(x)
= {r,2}, either y =2 or y==2. If y =2, then ze¢F and hence
2e M(F — {x}) v {z}, a contradiction. Therefore y = x. Let U be an open
set such that xe U and z¢ X — U. Then the sets M (x,) — U are disjoint and
are both open and closed in the relative topology of X —U. Since infi-
nitely many of the sets M(x,)—U are non-empty, the semi-local con-
nectedness of X is contradicted. This completes the proof.

We recall a few definitions and results from [9]. If X is an s.lLc.
continuum, then by a cyclic element of X is meant an endpoint of X,
a cutpoint of X or an E,-set of X, i.e., a non-degenerate connected subset
of X which is maximal with respect to the property of having no cutpoint.
The non-degenerate cyclic elements of X are termed true cyclic elements,
and they can be characterized as follows. Each true cyclic element C of
X is a subcontinuum which contains a non-cutpoint p of X; moreover C
consists of p and all elements xe¢X which are not separated from p by
gsome point. Further, any two distinet true cyclic elements of X can
intersect in at most a point which is necessarily a cutpoint of X.

THEOREM 3. Let X be an s8.l.c continuum. With respect to the cutpoint
order each set C(x) is either a single point or is the union of a family of cyclic
elements each of which contains x. Conversely, each true cyclic element of
X lies in a wunique C(x)

We omit the proof of Theorem 3 which stems directly from the
definition of C(x) and the above remarks about cyclic elements.
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Our next result is the generalized Borsuk theorem alluded to in
section 1.

THEOREM 4. If X 48 an s.l.c. continuum, then X has the fixed point
property for u.s.c. continuum-valued maps if and only if each cyclic element
of X has this property.

Proof. Let P denote the fixed point property for u.s.c. continuum-
valued maps. By Lemmas 5 and 6 and Theorems 1 and 2, X has P if
and only if each set C(x) has P. Thus we need only show that a non-
degenerate C(x) has P if and only if each of the true cyclic elements
comprising C(x) has P. The “only if” part of this assertion is clear, since
these cyclic elements are retracts of C(x). But the converse is equally
clear, for if f: C(x) - C(x) is u.s.c. and continuum-valued and z¢f(x),
then f(x) lies in some true cyclic element E. Letting p: C(x) »* E be
the natural retraction, pf maps ¥ into £ and hence pf has a fixed point
yeE. But then yepf(y) < f(y).

CoROLLARY 4.1 (Wallace). If X s a tree, i.e., a continuum in which
each pair of distinct points is separated by some third point, then X has
the fized point property for wu.s.c. continuum-valued maps.

Proof. It is well known [7] that a tree is locally connected and
hence is s.l.c. Further, each cyclic element is degenerate so that the corol-
lary follows at once from Theorem 4.

5. Application to the Eilenberg-Montgomery fixed point theorem.
This notable result asserts that if X is an acyclic ANR, then X has the
f.p.p. for u.s.c. mappings with acyclic point-images. (Here acyclic means
having the homology of a point. An ANR is a compact metric space
which is a neighborhood retract of any metric space in which it can be
imbedded.) We may use Theorem 4 to obtain an immediate extension
of this result to Peano continua all of whose cyclic elements are acyclic
ANR’s. The natural retractions p, clearly preserve the property of having
acyclic point-images, and so we may assert

COROLLARY 4.2. If X is a Peano continuum each cyclic element of
which is an acyclic ANR, then X has the fixed point property for wu.s.c.
maps whose point-images are acyclic.

It should be noted that this result truly generalizes the Eilenberg-
Montgomery theorem, i.e., there exists a continuum satisfying the hypo-
theses of the theorem which is not an ANR. To see this let 2" denote the
“Poincaré sphere” which is described in [3], p. 218, and [10], p. 245,
and let 4 denote the set which results when a single open 3-cell is deleted
from X. It can be shown that 4 has trivial homology but is not contractible.
Thus 4 is an acyclic ANR which is not an AR. We construct a conti-
nuum X by letting 4,, 4,, ... be a sequence of disjoint copies of 4 each



FIXED POINT THEOREM 251

meeting an arc [a, b] in a single point p,, such that lim diam 4, = 0
and limp, = a. Let -
X = Ul{An} v [a, b].
n=

The sets 4, are the true cyclic elements of X, but X is not an ANR,
since otherwise a closed ball B(a, ¢) would contain some 4, as a retract,
and this would imply 4, is an AR.

6. An unsolved problem. The theorems in this paper have dealt
with the following general question. If X is a connected space which is
the union of subspaces X;, if X; ~ X; is at most a point when ¢ # j, and
if there are no “circular chains” among the family {X;}, when does
a certain fixed point property extend from the subspaces X; to the space X ?

It is natural to inquire under what circumstances the condition
that X; ~ X; be at most a point can be relaxed.

For example, suppose X = A v B where A and B are continua
with the f.p.p. Stanko [4] has shown that if dim4 = dimB =1 and
if A ~ B is a tree, then X has the f.p.p. On the other hand, Yandl [11]
has exhibited two-dimensional continua A and B in E3 such that 4 ~ B
is a retract of X = 4 v B, A and B have the f.p.p., yet X does not have
the f.p.p.

Suppose X = 4 v B where A and B are locally connected continua
with the f.p.p., and suppose A ~ B is a retract of X (or even that 4 ~ B
is an arc). Does X have the f.p.p.? (P 560) This problem appears to be
quite difficult.
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