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Introduction: Many authors [1, 2, 4, 7-12] have diccussed the prob-
lem of the convergence of successive approximations to a solution of
a differential equation, when the latter is unique in virtue of a unique-
ness criterion. In these papers, a comparison function w(t, #) appears
which, in addition to the assumptions required by a uniqueness criterion,
is assumed to be non-decreasing in #. In the present paper, we inves-
tigate the following problem. Suppose for a given differential equation
there holds a uniqueness criterion with a comparison function o(t, ).
Does then exist another comparison function w*(t, #) non-decreasing
in # which also supplies a uniqueness criterion for the equation in ques-
tion ? The answer is negative in general (Theorem 4) but it can be
positive in a special case (Theorem 3). Both mentioned theorems are
given in Section 2, which also includes a discussion of the problem of
convergence of successive approximations. The theorems of Section 2
are consequences of the main two results (Theorem 1 and 2) presented
in Section 1. The first concerns a class of real continuous functions of
one real variable and is perhaps of some interest by itself, while the second
is a kind of peculiar example of an ordinary differential equation. Proofs
of Theorems 1 and 2 are given in Sections 3 and 4, respectively.

1. Statements of the basic results. The class of real functions we
have mentioned in the introduction is the following:

Class K. We say that a real function weK if it is continuous on
[0,a], a >0, and satisfies two conditions:
(1.1) w(0) =0, ou)=0if u>0,
(1.2) low(u,) — o ()| < o(|u,—uy])  for each uy, u,e[0, a].

If weK, then by w* we denote the best non-decreasing majorant
of o, that is the function defined by

(1.3) w*(u) = max w(v), wuel0,a].
o<r<u
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It is easy to check that if weK, then so does w*.
Our first result reads as follows:

THEOREM 1. Suppose weK and let w* be given by (1.3). Let C be in
the range of w. Let w(C) be defined by

(1.4) wu(C) =0 and o)< Cif u<u(C).
Then we have |
w(C/3) %(C)
(1.5) [ dujo(u)< M [ dujo*(u)

for each C in the range of w, where M is a constant which depends neither
on w nor on C.

Note that the integrand of the left-hand side integral of (1.5) is
always greater than or equal to that of the right-hand side integral.
From Theorem 1 we have the following

COROLLARY 1. Suppose weK and w* is given by (1.3). Then both
integrals

(1.6) [aujo(@) and [ dufo*(u)
0 0

are simultaneously convergent or divergent.

As it is well known the divergence of the integrals in (1.6) is equi-
valent to the statement that #(f) = 0 on any interval [0, ¢), ¢ >0, is
the only solution of the initial value problem

(1.7) w = ow(u), u(0)=0,
or
(1.8) w = w*(u), u(0) =0,

respectively. Thus from Theorem 1 (or Corollary 1) we have the following

COROLLARY 2. Suppose a function weK and let o* be defined by
(1.3). Then u(t) =0 dis simultaneously either a unique or & non-unique
solution of both equations (1.7) and (1.8).

The second result is in the effect that the non-autonomous counter-
part of Corollary 2 is no more valid. For that purpose consider a real
function o continuous on

Py={(t,u): 0<t<a, 0<u<b}
with the properties:
(1.9) w(t,0) =0, ow(t,u)=0Iif v >0,

(L.10)  Joo(t, tq) — (8, )] < 0 (ty [0y — Uy])
for each (¢, u,), (¢, u,) eP,.
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Let w* stand for the best majorant of v non-decreasing in u, that is

(1.11) w*(t,u) = maxw(t,y), (t,u)elPy.

o<co<<u

Then we have the following result:

THEOREM 2. There exists a real function o continuous on P, satisfy
ing (1.9) and (1.10) and such that w(t) = 0 on any interval [0, &), 0 < &< a,
is the only solution to the initial value problem

(1.12) w =w(t,u), u(0)=020,
while the corresponding problem
(1.13) W o= w*(t,u), u(0)=0

for o* given by (1.11) admits a solution wu(t) which is positive for t > 0.

Let us call the reader’s attention to the importance of assumptions
(1.2) and (1.10) in Theorems 1 and 2, respectively. If those assumptions
were droped, then Theorem 1 would be false while the example involved
in Theorem 2 would be easy.

Theorem 1 has been obtained in the early fifties by the second of
the authors without being published. The proof of it presented here is
due to the first of the authors and, though it follows the main lines of
the original proof due to Pli§, it has been considerably simplified.

2. Successive approximations. In this section we are concerned
with the problem whether or not a solution of

(2.1) y' = ft,y), Y(te) = Yo

can be obtained as the limit of the sequence of successive approximations
defined by

t
(2.2) Yalt) = Yot [flt, ynoa(@)dt i m>1,
ty

where #,(t) is arbitrary but continuous and ¥,(f,) = ¥,-

For the sake of simplicity we assume in the sequel that ¢, = y, = 0
and we restrict ourselves to the case where v and f(¢, y) in (2.1) are real.
We will also assume throughout this section that f, in (2.1), is a contin-
uous function on P, where

P={ty:0<t<a, y<b}, a>0,b>0.

A well known example due to Miiller [5] shows that the sequence
(2.2) as well as all its subsequences may be not convergent to a solution
of (2.1) even if the latter is known to be unique. On the other hand, it
is also known that (2.2) tends to the unique solution of (2.1) if the funec-
tion f in (2.1) satisfies the Lipschitz condition with respect to y.
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A great deal of attention has been paid to the above problem in the
case where the solution of (2.1) is unique and the uniqueness is a con-
sequence of a uniqueness criterion [1, 2, 7-12]. Now the most known
uniqueness criteria involve a generalized Lipschitz condition for the
function f which consists of the existence of a function 4 defined on

Py={(t,u): 0<t<a, 0<u<2b
such that, for any (¢, y,), (f, y.)eP, we have
(2.3) It y)—=F(t w2l < AL [y —9al), >0,

For brevity of the subsequent discussion we introduce now certain
classes of functions 1 defined on P,.

Class A. We say that ied if 1 is continuous on P, with the prop-
erties: A(f,0) =0, A(t,u)>0 if >0 and «(f) =0 is the only solution
w = u(t) of the differential equation

(2.4) u' = A(t, u)
on any interval (0, ], 0 < & < a, with the property

(2.5) w(t) >0 and “—t(t)-_w as t— 0+,

Class A,. This class is assigned to a fixed continuous function f
on P and consists of those elements of A for which inequality (2.3) is
satisfied.

Classes A* and Af. These are subclasses of A and Ay, respectively,
composed of functions 4 which, in addition, are non-decreasing in u for
any fixed t.

Now we state a uniqueness criterion for solutions of (2.1).

TueorREM A. If f in (2.1) is continuous on P and the class A; is not
empty, then the solution y = y(t) of (2.1) is unique on any interval [0, ],
e @.

Theorem A is often known as Kamke’s general uniqueness theorem
(cf. [3]) and many other uniqueness criteria involving inequality (2.3) are
either special cases of Theorem A or can be easily reduced to it (cf. [8]).

Concerning the problem whether or not the solution of (2.1), unique
in virtue of a uniqueness criterion, can be obtained as the limit of (2.2),
seemingly the most general known result is due to Coddington and Levin-
son [1] and it reads as follows:

THEOREM B. Let f in (2.1) be continuous on P, let |f(t,y) < M if
(t,y)eP and put a = min (a, b/M). If the class Af is not empty, then the
sequence (2.2) is defined and converges uniformly on [0, a] to the unique
solution of (2.1).
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Let us remark that in the known proofs of Theorem B the monoto-
nicity assumption (the non-emptiness of A7) is essentially used. A problem
(cf. Wazewski [11], Probléme LP), which seems to be still unsolved, is
whether or not Theorem B remains true without any monotonicity
assumption; that is, whether or not Theorem B is true if the agsumption
of non-emptiness of A; is replaced by the non-emptiness of A;. A natural
question to be answered first, if one wishes to approach the above problem,
is whether or not the class /A is not empty if the class 4; is known to
be not empty, because by Theorem B the positive answer to this question
would settle the problem.

The aim of this section is to settle the above particular question.
We are going to show by an example (Theorem 4) that the answer is,
in general, in the negative but we also show (Theorem 3) that if the
non-emptiness of A, is effected by a function 1 of the form

(2.6) Aty u) = @(t)p(u),

where u is continuous and non-negative on (0, a] and
(2.7) [o(tydt < oo,
0

then the monotonicity assumption in Theorem B is superfluous.

It is a simple matter to check that the necessary and sufficient
condition for A of the form (2.6) with ¢(¢) satisfying (2.7) to be in the
class A is that p is continuous on [0, 2b], »(0) =0, y(u) > 0 if « >0 and

(2.8) f(lu/y;(u) = oco.

For the result which follows we will need the following

PROPOSITION 1. Suppose wie K for tel and wy(u) < w(u) for tel
and wel0, al, where T is an arbitrary set and y(u) is continuous on [0, a]
and p(0) = 0. Then the function
(2.9) o(u) = st,upwt(fu,)

eT
also belongs to K.

Proof. It is easy to see that w(0) = 0 and w(u) -0 as v - 0.
In order to prove that weK it is enough to check (1.2), since (1.1) is
obvious and the continuity of o follows from (1.2) and the fact that
w(0) = 0 and o is continuous for # = 0. Let us fix u,, u, and suppose
o(u)— o (u,) = 0. By (2.9) there is a teT such that o(u,) < o(u,)+ e,
where ¢ is an arbitrary positive but fixed number. We have —ow(u)
< — wy(u) for any ¢ and u. Therefore, using the fact that w,e K, we get

0 (Uy) — 0 (Ug) < wi(Uy) — 0y (Ug) + & < y(|Uy— Ug|) 4 € < 0 (JUy; — uy|) +- €.
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Since ¢ is arbitrary, (1.2) holds for o defined by (2.9). This com-
pletes the proof of Proposition 1.

The following result is a consequence of Theorem 1:

THEOREM 3. If, for a fizxed function f continuous on P, A; contains
a function A of the form (2.6) with @(t) continuous and non-negative on
(0, a] and satisfying (2.7), then A] is mot empty, too.

Proof. Without any loss of generality we may assume that ¢(t) > 0,
if te(0, a]. For any fixed t¢(0, a] let us set

1
(2.10) wy(u) = (—t)ma?ﬂft y Y1) —f (s Ys)ls
where the maximum is taken for |y,—vy,| = u, |y,|, |¥:] <b. We have
4 = @(t)y(u)ed;. Therefore by (2.3), (2.6) and (2.10) we get
(2.11) og(u) < w(u) for te(0,a] and uel[0,2b].

We prove now that w;e K. The continuity of w; as well as condition
(1.1) is clear. To prove (1.2) let us fix u,, #, and suppose w;(%,)— wy(u,)
> 0. By (2.10) there exist v,,¥,e[ —b,b] such that |y,—y,| = u; and

(2.12) @(t) w(uy) = [f(t, y1)—F(t, yo)l.
There exists a y,e[ —b, b] such that either |y,—y,;| = |u;—u,| and
[Ys—Ys| = uy OF |y;—Ys| = uy and [y,—y,| = |u;—u,|. To fix ideas we

assume that the first possibility is the case. The other can be handled
in exactly the same way. We have then

(2.13) [f(t, y2) —F(t, ys)| < @ (8) w(u,)
and
(2.14) 1F(Ey y1)—F(t, ya)| < @() (|1, —usyl).

From (2.12), (2.13) and (2.14) we get
Og‘?’(t)(wt(ul)_wt '“'2)) Lf(Ey ) —F (s )| — | F (1, y2) —F (2, ys)]
< |f(t, y)—F (2, ys)| < @(t) w(|uy —uyl),

which proves condition (1.2) for ;. Therefore w;e K for every te(0, a].
Let us put now

(2.15) w(uw) = sup wy(u), 1e(0,al.
t

It follows from (2.11) that w(u) < y(u) for ue[0,2b], whence, by
Proposition 1, we conclude that weK. Since 1 = ¢(t)y(u) belongs to A,
(2.8) holds true and by (2.11) and (2.15) we get that [du/w(u) = oco.

0

Hence 4, = ¢(f)w(u)ed, and by (2.10) and (2.15) it is easy to see that
also A, ed;.
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Consider now the function A, = ¢(f)w*(u), where w* is the best
non-decreasing majorant of o (cf. (1.3)). Since weK, it follows from
Theorem 1 (or Corollary 1) that [du/w*(u) = co, Hence, by (2.7), A,eA*.

0

But 2,(¢, ) > 4,(f, ), thus i,eAf, which completes the proof of 'L he-
orem 3.

As an obvious consequence of Theorem 3 and Theorem B we have

CorOLLARY 3. If f(t,y) in (2.1) is continuous on P and there exist
continuous and non-negative functions ¢ on (0,a] and v on [0, 2b] such
that p(0) = 0 and conditions (2.7) and (2.8) hold, and for any (t,y,) and
(t,y,) tn P (t > 0) we have the inequality

F(t y)—F(E, y2)l < @) v ([y1—al),

then (without any monotonicity assumption on y) the sequence (2.2) is defined
and converges uniformly on a certain interval [0, a] to the unique solution
of (2.1).

Remark 1. LaSalle [4] and earlier Wintner [12] (for the case ¢ () =1)
have obtained Corollary 3 under an additional assumption that w(u)
is non-decreasing with respect to 4. In Wintner’s paper there is a state-
ment that the monotonicity assumption is superfluous. However,
there is no proof of it but only a hint, which, in our opinion, is misleading.
Judging from this hint, we do surmise that Wintner overlooked some
difficulties which arise if one drops the monotonicity assumption.

Our next result is a consequence of Theorem 2.

THEOREM 4. There exists a function f continuous on P such that A,
is not empty, while A7 is empty.

Proof. Let w(f,u) be the function whose existence is given by
Theorem 2. The function o is continuous on P, and satisfies conditions
(1.9) and (1.10), which also means that, for each fixed ¢, v = w(f, u)
as function of % belongs to K. Moreover, we/ while w*¢A*, where w*
is the best non-decreasing in «# majorant of o defined by (1.11). A func-

tion f, the existence of which is asserted by Theorem 4, is to be defined
as follows:

w(t,y) if 0<y<b,

2.16 t =

(2.16)  f(t,9) {min (0, )+ o, u—y) if —b<y<o.
o<u<b

The continuity of f is easy to see and we omit the details. Consider
now the functions

(2.17) Q(t, w) :| ﬂa‘f If(t, y)—F (2, ¥5)l

and b

(2.18) Q*(t,w) = max |f(¢, y,)—f(t, y2)l,
V1 —-Yl<u

Colloquium Mathematicum, t. XVIII 4
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where |y;| <b, ¢ =1,2, and te[0, a]. The functions 2 and 2* are con-
tinuous on P, and clearly we have
(2.19) Q*(t, u) = maxQ(¢, u).

o<<vr<u
We shall prove that
(2.20) Qit,u) =ow(t,u) if 0<u<b,

The remarks concerning the uniqueness criteria contained in [6]
are in the effect that if A; is not empty, then Qe4;, as well as that if Af
is not empty, then 2*e/A,. Hence to show that A7 is empty we must
prove that 2* does not belong to A. Now we set that this is the case
by taking into account the properties of w, if (2.20) holds true. Thus
to complete the proof we need to prove (2.20).

It follows from (2.16) and (2.17) that

(2.21) f,9)—f1,0) =wd,y) <@,y i 0<y<bd.

On the other hand, we will prove that for any (¢, v,) and (¢, y,) in P
we have

(2.22) 1f(yy)—f(t, ¥l < 0(ty [y —yal) I |y —ye < 0.

Inequality (2.22) is to be proved for each fixed t. Thus, for brevity’s
sake we may forget about ¢ and argue on function of one variable wu.
To be more precise, we have to prove the following statement: if v = w(u)
defined on [0, 2b] belongs to the class K and a function f defined on
[—b,b] is given by
(216")  f(y) =o(y) f 0<y<b
and  f(y) = min (o(u)+o(u—y)) if —b<y<0,

. o<<u<ch
then
(2.22°) [fy)—Fw)l < o(ly1—ysl) |y —yol < b, 5| < by i =1,2.

For this purpose, let us fix y, and y, in (2.22") and suppose that
f(y)—f(ys) = 0. Then by (2.16') we have the following cases:

(2.23a)  f(y)—f(y2) = o(y,)— o (y.) if 49,20, y,>0,
(2.23b) = o(u)+o(u,—y)—oly,) if y, <0, y,>0,
(2.23¢) = (%) + o (U — Y1) — 0 (U) — (U —Y,)

if ¥, <0, y,<0,
(2.23d) = oY) —o(u)—o(u,—y,) if 5, >0, y,<0,

where u#; and u, are values at which the minimum in (2.16") is attained.
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In the first case, inequality (2.22") is obvious, since weK. In the
second case, by (2.26') we increase the right-hand side of (2.23b) if we
put u, = y, and we get (2.22’) (note that since |y,—y, <b, y, < 0 and
¥, =0, we have y, < b). In the third case, replacing u, by u, we again
increase the right-hand side of (2.23¢) and since we K, we get w(u,—¥y;)—
—ow(Uy—1Y,) < o(|]y;—Y.|), hence also (2.22") holds. In the last case,
adding and subtracting o (u,-+ ¥, —y,) from the right-hand side of (2.23d)
(note that w,+y,—y,<2b) and making use of inequalities w(y;)—
—0 (U F Y1 —Ys) < 0(Uy—Y,) aNd o (Up+ Y1 —Ys) — 0 (Us) < @ (Y1—Y,) We
obtain (2.22'). Therefore we have proved (2.22’), hence also (2.22).

By (2.22) and (2.17) we get the inequality Q(t, y) < w(t,y), if y <b,
which together with (2.21) imply (2.20). Therefore we have proved (2.20)
and completed the proof of Theorem 4.

Remark 2. In the recent book of Hartman [3] an exercise is pro-
posed (namely Exercise 6.5 on p. 33) which consists of the negation of
Theorem 4. This exercise appeared there due to an uncorrect quoting
of a result from the paper [6] of the first of the authors (cf. [3], notes
on p. 44). In the same book an analogue of Theorem B is stated but
instead of Af, only the class A, is assumed to be not empty. Since in
the proof of this theorem Hartman makes use of the mentioned exercise,
he proves in fact nothing more than Theorem B of this paper. Thus the
question whether or not his Theorem 9.1 ([3], p. 41) is true is open. Our
Theorem 4 shows that if it is true, then a proof of it cannot be reduced
to a proof of Theorem B.

3. Proof of Theorem 1. The proof will be carried on in a few steps;
that is we are going first to state and prove three lemmas and then we
prove Theorem 1.

LEMMA 1. Assume weK and let [uy, .| = [0, a], where

(3.1) either w(uy) =C or ow(u,) =0.
Put

(3.2) B={u: uy<u<u, ou) <0/4}.
Then we have

(3.3) m(B) < 3(uy—u,),

where m stands for the measure.
Proof. Put p = u(5C/8); that is

(3.4) w(p) =50/8 and w(u)<>bC8 if u<p.
We claim that

(3.5) either inf(b—uy)>p if w(uy)=C or inf(u,—b)=p if w(u,)=7C.
beB beB
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We restrict ourselves to the first case of (3.5), since the other case
can be handled in the same way. Let us fix beB. By (3.2) and (1.2) we
have the inequality 5C/8 < 30/4 < w(up) — w(b) < w(b—u,), whence, by
(3.4), (b—uy) >p for each beB. Therefore we have proved (3.5). Next
we claim that if beB, then b—p¢B. Indeed, by (3.2), (3.4) and (1.2)
we-have the inequality C/4 < 50/8—C/4 < w(p)— o (b) < w(b—p), which
by (3.2) shows that b—p¢B. Denote now by B_, = {u: u+peB}. We
proved that B_,() B =0 and, by (3.5), that B_,c [u,, ,], which
completes the proof of Lemma 1.

LEMMA 1'. Denote by A = {u: o(u) < C, uy< u < uy}, where wek,
w(uy) = C and u, is arbitrary. Put B, = {u: wed, o(u) <4 "C}. Then

1
(3.6) m(B,) < —% m(A).

Proof. Since o is continuous, the set 4 can be decomposed into
two parts A’ and A’’, where A’ is the union of at most denumerable
number of closed intervals and w(u) = O if weA’”. The same remark
applies to each B,. Applying now Lemma 1 to each interval composing A’
and taking into account that m(A4’) <m(4) and B, =« A’ we get that

m(B;) <m(A4)/2 and an easy induction argument leads to (3.6).
LEMMA 2. Let weK and assume

(3.7) o(u)=yu  for 0<u<ly =4,
(3.8) w(ug) =C, uy<< 4.
Then
49
(3.9) | [ dufeo(u)< My,
%o

where the constant M depends neither on o nor on C.
Proof. Let us set A; = 47'Cly and 6; = {u: u,<u<A4,, 4°°C

<o) <40}, i=1,2,..., 6 = {u: uu<u< 4,, ou)=>C}.
Then
44 o
(3.10) [[aujo(u) < Y m(s;)4/0.
Uy 1=0
By (3.7), 6 <[0,4,,], i=1,2,..., and, therefore, ¢, c B;_,

= {u: wo < u< Ay, o(u)< 470}, Thus by Lemma 1, m(8;) < m(B;_,)
< 27*"1'4;_,, whence

(8.11)  m(8)4°)0 <271 A, 140 =274y, i=1,2,...,
and
(3.12) m(8)[C < A,/C = 1][y.
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From (3.10), (3.11) and (3.12) we get the inequality

4y 00
[ aufo(w) <1ly+(4fy) Y27 = 9)y.
ug 1=1

Therefore we have (3.9) with M =9 in it, which completes the
proof of Lemma 2.

LEMMA 3. Let weK and let w* be given by (1.3). Assume C is in the
range of o and put p; = w(37°C), i =0,1,2,..., where the function
u 18 defined by (1.4).

Then the inequality

Di+1 by
(3.13) fdu/w(u)gMo [ dujor), i=0,1,2,...,
Pit2 Pi+1

holds true, where -M, depends neither on o nor on C.
Proof. Note that

(3.14) Pi<Piaf3, =1,2,...

Indeed, by (1.2) we have w(p;_,) < 3w(p;_1/3), but by the definition
of p; we have w(p;_;) =37""'C. Therefore w(p;,/3)>37"C, which
shows (3.14). Put y = 37*"'C/p;. We claim that

(3.15) o) =yuw if  w<<p,.

Suppose the contrary, that is that there exists a u,<p;,, such that
®(uy) < yuy. Then by (1.2) there would exist a u,(= ku,, k an integer)
such that p;—u, < piy g and o (u,) < yu; < yp; = 3~*-1¢. But then we had,
using (1.2) again, that 37120 < w(p)— o(u,) < o(p;—u;) <3710,
Hence a contradiction and thus (3.15) holds.

Put o(u) = max(w(u), yu). By Proposition 1 we have weK. We
shall now apply Lemma 2 to the function o, replacing C, y and %, in
this lemma by 3~*"2C, 37""'C/p;, pi,., respectively. Assumption (3.7)
of Lemma 2 is manifestly satisfied and (3.8) follows from (3.14). By
Lemma 2 we have then

4g
[ dujo(u) < M[y, where A= (3"7C)(3% pi/C) = pif3.
Pit2

But, by (3.14), 4,> p;.,1. Therefore, by (3.15), we get

Pi+1 Pitq B 4q .
(3.16) [ duwjow) = [ dujow< [ dufou)< My,
Dito Pita Pt

On the other hand, w*(u) <3~ °C if u < p;. Therefore

(3.17) fidu/w*(u) > 3'p;/C = 37 p.

Di41
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Hence, putting M, = 3M, (3.13) follows from (3.16) and (3.17).
Since the constant M in Lemma 2 depends neither on » nor on C, so
does M,. Hence the proof of Lemma 3 is complete. ‘

Now to prove Theorem 1 we have to show the inequality

»

(3.18) [ dufo(u) <M fodu/w*(u),

where p; = u(37°C), i = 0,1, the function « is given by (1.4) and C
is the range of we K. But (3.18) easily follows from (3.13). Theorem 1
follows now immediately from Lemma 3. The proof of Theorem 1 is
thus complete.

4. Proof of Theorem 2. We are going to define the function e, the
existence of which is asserted by Theorem 2, on the set

Py={(tu): 0<t<1, 0<u<1).

Before, we introduce an auxiliary function to be used in the con-
struction, and we prove a proposition we will need later.

Let k, a, and b be positive reals such that £ >1,0<a <1,0<b < 1.
Let us set

(4.1)  p(w) = u(u; kya,b) = min(kw, a, (b—u)k) if 0<u<b

and

(4.2) u(u) = p(us; k,a,b) =pu(u—mb; k,a,b) if mb<u<(m+1)b,
where m = 1,2, ...

By (4.1), u(b) = 0. Therefore the function u defined by (4.1) and
(4.2) is continuous on [0, co) and periodic with period b.
We have manifestly

(4.3) 0 < u(u; kya,b) < a,
and it
(4.4) kb > 2a,

then x assumes the value a at some wu.

ProproSITION 2. The function u = pu(u; k, a,b) defined by (4.1) and
(4.2) belongs to the class K for each k >1 and a,be(0,1] (cf. Section 1).

Proof. Condition (1.1) is manifestly satisfied. To prove condition
(1.2) consider the function »(u) = p(u+v)—pu(u), where v is a fixed
positive number. It is easy to see from (4.1) that the right-hand deriv-
ative p. of u exists and is equal either to & or to 0 or to —k. Hence
also »'. exists and is piecewise constant. Farther, by (4.1) we have w(b—u)
= p(u) if 0 < u < b, which together with the periodicity of ux implies
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that p(mb—u) = u(u) for each integer m and 0 < u < mb. The latter

equation has as a consequence that »(u) = — v(mb—u—v)if mb—u—v=0,
which in turn implies that maxv(u) = —miny(%).
u=0 u=0

Therefore to corhplete the proof it is enough to prove that maxwv(w)
u=0
= »(0) = u(v). Suppose the maximum is attained for v = u,. By period-

icity of » we may assume that 0 < w,<b. Since v(u,) =0, we may
assume also that either u(u,) = ku,<< a or u(u,) = k(b—uy) < a.In the
first case, u)(u) =k if 0< u< u,. Therefore v (u) = uo(u+0)—Ek< 0,
if 0<u<u,, whence »(0)=(u,). In the second case, v’ (u) = p’ (u-+2)+
4+ k>0 if uy<u<b. Therefore again »(0) = »(b) = »(u,). But »(u,)
— max »(u) thus the latter inequality yields the equation »(0) = maxv(u),

o<u<h u=>0

which completes .the proof.

In the sequel, we shall consider the function wu restricted to [0, 1].
The function o in question will be obtained as the limit

(4.5) o(t,w) = lim,w,(t, w), (&, u)eP,y,

where the functions w, are to be defined now.
Suppose k,, n =0,1,2,..., is a sequence of positive reals such
that

(4.6) ky =1, k,>2ki_éf»-1 if n>1,
where e is the base of natural logarithms. Put
(4.7) up(t) = k2 0<t<1, n=0,1,...
Let us set, for each (t, u)eP,,
(4.8) we(t, u) =u
and, inductively,
(4.9)  ou(t, ) = max (o, (t, ), p(u; ke, knly, Un_a(t) i n=1.

We will prove now that for each » = 0,1, 2, ... the following con-
ditions hold:

(i) wnlt, w) = kou if  0<u<ky?,

(ii) wX(t, ) = max oy, v) =Vu if  w>ki’,
0<<v<<u

(iii) (g (t, ) — n(ty Ug)| < op(t, [ty — Wo|) < K| Uy — s

for each (t, u,), (t, uy)e Py,

(iv)  du(t)|dt = w,(t, uz (1) for i=0,1,...,m, 0<I<T.
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To prove (i)-(iv) we apply the induction argument. It is clear by
(4.6), (4.7) and (4.8) that (i)-(iv) hold true if » = 0. So assume that (i)-(iv)
hold for » = N. Then by (4.9)

(4.9%) wy41(t, u) = max (wN(t7 u), p(u; kg, kn', uN(t))'

By (4.6) we have ky,, > 2kjy¢"N, therefore in particular ky', < ky',
and by (4.1) and (i) we get for n = N that

(s kngay Bty un(®) = kyu > kyw = oy(t,u) it w< YRy el

(Note that by (4.6) and (4.7) we have ky,,uy(t) > ky, ky’e™ "V > 2k5",
hence, by (4.4), u(u; ky,., kn', uy(t) = ky' if w = ky'kxl,). There-
fore by (4.9')

(4.10) ot w) = kyu 0w < kytkyl,.

Since by (4.6) we have ky%, < ky'kylt,, (4.10) implies (i) for
n =N+41. To see (ii) for » = N+1 note that oxy(t, u) = yu it
% = ky%,. Therefore, by (4.10), wy,,(t, u) > yu it ks < u < kyh ky'.
But wy,, (1, kvl ky') = ky', and so

(4.11) ona(t, w) =yu it kR, <u<kyi.

By (4.9") we have wy,,(t, %) > wy(t,u), whence also w1 (t, u)
> wi(t, u). Therefore by (ii) for » = N and (4.11) we have (ii) for
n=N41.

Condition (iii) means that, for each fixed #, w,(t, ) as a function
of u belongs to the class K. Since both functions in the right-hand side
of (4.9) have this property, we have, by Proposition 1 of Section 3, the
inequality
(4.12) lon 41 (2, %) — w0y (E, us)| < w1 (ty % —uy)

for each (t,u,),(t, u,)eP,. By (iii), for n = N, wy(t,u) satisfies the
Lipschitz condition with respect to « with the constant’ kx, and by (4.1)
and (4.2) the function u(u; ky,,, k5", uy(t)) also satisfies the Lipschitz
condition with the constant ky,,. Thus by (4.9’) we have the inequality
ony1(ty %) < kyya%, which together with (4.12) proves (iii) for n = N 1-1.

Finally, condition (iv) for » = N+41 and ¢ = N1 follows from (i)
for » = N+1 and (4.7); for n = N+1 and ¢ = N it follows from (iv)
for n =N, (4.9') and the fact that w(ws ey, 'y uy(8)) = 0 if
% = uy(t). Suppose now that i< N—1. By (iv) for » = N we have
oy (¢, us(t)) = kyu(f). Thus using (4.6) and (4.7) we get

(4.13) oy (t, w(®) > kite ™™ >k > ky' i i< N—1,

whence (cf. (4.3)) we get wy(t, u(t) > (Ui ()5 by, ky'y uy(t) if
@ < N—1. Therefore, by (4.9"), wy/(t, us(t)) = wy,(f, wi(?) if < N—1,
which, using (iv) for n» = N, completes the proof of (iv) for n = N41.
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Note that k,' — 0 as n — co, therefore by (4.7)
(4.14) Un(t) = 0 uniformly in [0, 1].
Now by (4.9) we have
(4.15) Wn(ty U) = wp_1(t, ) = wo(t,u) =u, n=1,2,...
Therefore again by (4.9) and (4.3) it is easy to see that
(4.16) Oty u) = op_(t,w) if  w>kpl,
and, taking into account (i), that
(4.17) on(ty u) <kt it w < kpl
We shall prove now that the function o given by (4.5) has all prop-

erties stated by Theorem 2. It follows from (4.16), (4.17) and (4.5)
that

(4.18)  w(t,u) = wu(t,u) = wpp(t,u) f w>=k;'and p>1
and
(4.19) op(t,u) >0 = w(t,0) if wu — 0 uniformly in {.

Now by (4.18), (4.5) and (iii) we have
(4.20) |l (2, %) — o (t, us)| < (ty |uy—u,|)  for any (¢, u,),

(¢, us) ePy, which, together with (4.18) and (4.19), implies that » is con-
tinuous on P, and satisfies conditions (1.9) and (1.10). By (4.18) and
(iv) we get that w = u,(t) is a solution of

(4.21) w = o(t,u), u0)=uy(0)

for each n = 0,1,..., and by (iii) and (4.18) it is unique. The latter
implies that the unique solution of (1.12) is u(f) = 0.

Finally, by (4.18) and (ii) it follows that w*(t, u) = wn(t, u) = yu
if > k,~,, whence

(4.22) o*(t,u)>yu if wu>=0.
As a consequence of (4.22) we can have the differential inequality
(4.23) ¢'(t) < w*(t, @(t)), where ¢(t) =2/4.

Now in view of the theory of differential inequalities it follows from
(4.23) that ¢(?) is less than or equal to the maximum solution of (1.13)
if > 0, which means that (1.13) admits a solution which is positive for
1 > 0. Therefore we have proved that w(t, ) given by (4.5) satisfies (1.9)
and (1.10), the unique solution of (1.12) is «(t) = 0, while (1.13) admits
a positive solution. Hence the proof of Theorem 2 is complete.
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