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1. Introduction. Some sequences of natural numbers can be used to
describe a harmonical structure of musical chords as it was done in [8].
One can improve the harmonical analysis by defining some operations
on these sequences and using its properties. One obtains algebras (denoted
by &,) which are finite Boolean algebras with the new greatest element
added and with three new unary operations. Fundamental properties of
these algebras were investigated in [6]. The aim of the present note is to
give some further information about these algebras and about equational
classes generated by S,.

All notions from universal algebra may be found in [2], and from
lattice theory — in [1].

1. Preliminaries. Let T be a non-void set and let p: T — R* be an
injective function from 7' into the set of positive real numbers. In the
theory of harmony, we will interpret 7' as the set of tones, finite subsets
of T as chords, and p(?) as a pitch of the tone ¢ € T. The pair (T, p) is
called a tone system. Consider the set T' with elements indexed by the
integers. In this case, we identify the set 7' with the set Z of all integers.
Therefore, let T = Z. Denote by T, the tone system (Z, p) if p(z) = 27"
for z € Z and for a fixed natural number n. The tone system 7', is called
an equal temperament n-tone system. For any z,, 2, € Z in the tone system
T,, let z,rz, iff there is 2z € Z such that p(2,)/p(z,) = 2°,1i.e. 2,—2, = nz.
Evidently, r is an equivalence relation on the set Z. Now consider the set
C'(Z) of all pairs (C, z) such that C is a finite subset of Z and z € C (?).
Let (C,, 2,)R(C,, 2,) iff 2,72, and for every z € C, there is ¢t € C, such that
2rt and, conversely, for every « € C, there i3 v € C, with urv. Evidently,
R is an equivalence relation on C’(Z). For each ¢ € C'(Z)/R there is a re-
presentation ({z;,...,2;},?,) of ¢ by elements of C’'(Z) such that p(z;)

(1) We can interpret the pair (C, z) as an n-tone chord with the lowest tone z.
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< p(2;,1), where ¢=1,...,k—1 and p(%)/p(2;) < 2. This representation
will be called canonical. Let h be the mapping on C’(Z)/R such that

h(e)= (2g— 21, 2% — 23y -+) B — %1, W — (2, —2;)) for any ¢ e C'(Z)/R,

‘where ({2,, ..., 2}, 2,) i8 the canonical representation of ¢. It is easy to
see that h(c) is a sequence of natural numbers less than or equal to » and
the sum of all elements of &(c) is equal to n. Let

k
S; = {(81’ ...,8,‘):8,- € {1, ..."n}, kgln’ 281' = n}
=1

and
8, = 8,9{( )}
Let
C(Z) = C'(Z)u{(®D, )}, &(D, ) =()

and let ¢: C(Z) - C(Z)/R (?) be the natural mapping of C(Z) onto C(Z)/R.
The composition ko ¢ maps C(Z) onto the set 8, of sequences of natural
numbers which describe a harmonical structure of chords in the tone sys-
tem T,. The interpretation of the described notions and operations
on 8, (defined in the sequel) in the theory of harmony can be found in
[6], [7] and [8].

Let » be a fixed natural number and assume that a = (a,, ..., a;)
and b = (b;,...,b,) belong to S,, k,r <n. Let a <b iff there exists
a sequence (v;);_,,.., such that 0 =v,<9v,<...<9, =% and, for
j=1,..,mn

,,,,,

Yj
b; = 2 a;.
- i=vj_1+1

Moreover, for every a € 8, we assume that a < ( ).

It is easy to check (see, for example, [5]) that the relation < is a par-
tial order on 8,. The poset <{8,,<) is a 2" '-element Boolean algebra
with the greatest element (n) and the least element 0 = (1,...,1). The
greatest element 1 of 8, is equal to ( ).

Note that {8,, < ) is a pseudocomplemented lattice (i.e. §, is a lat-
tice and, for every a € §,, there exists an element a* such that arz = 0
iff # < a*). One can define the operation * as follows:

1 ifx=0,
z* =12 ifzel,,z #0,
0 if » =1.

In the set S, we define three new unary operations which play an
important role in the theory of harmony. For a = (a,,...,a;) € 8, let

—@ = (G G_yy .0y @)y, A = (G, Qgy vy By By),
0t = (Byy .evy Oy iy Oppa+@) for a #£0,
() We assume that [(J, )IR = {(9, )}.
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where (ay, ..., @,_;,,) is the pseudocomplement of a. Moreover, —1 =1,
1 =1 and 1+ =0,0+ = 1.

Let S, denote the algebra <§,, v, A, —, ?, +, 0, 1.

2. Some properties of the algebras ©,. Fundamental properties of
S, can be found in [5]. We give some further information about these
algebras. It is easy to see that every algebra S, is a dual pseudocomple-
mented lattice and a double Heyting algebra (i.e. for all a, b € §,, there
exists an element a,b such that anz < b iff r < a,b, and there exists an
element a_ b such that ava > b iff © > a_b). Moreover, these three oper-
ations can be defined by means of the operations *, 1, v, A. If we denote
by a* the dual pseudocomplement of ¢ = (a,, ..., a;) € 8,, then

at = a"-ReL)

where a'*1) = g*L, g**L1) = g(=D*L) for § > 1.

Varlet [6] has shown that a double pseudocomplemented lattice is
regular, i.e. two congruence relations having a congruence class in common
coincide iff a* = b* and a* = b* imply a = b. We can see that all &,
are regular. Hence (see [4])

ayb = (a*vbd*™)**A[(ava*)'va*vbvb*],
a, b =(atabtt)ttv(anat)rAat AbADT].

Let S, = (8,, v, A, 0,1,

LEMMA 1. There exists mo mon-trivial congruence of the algebra S,
which 18 a congruence with respect to the operation .

Proof. Let ¢ be a non-trivial congruence of the algebra &, which is
at the same time a congruence with respect to the operation 1. It follows
from Theorem 16.7 in [1] that (n) = 1(0) for any congruence 6 +# w of
the algebra S, (w is the least element of the congruence lattice of S,).
Thus also

n)=1(p), 1t =0 and (=) =(1,...,1,2).

Hence (1,...,1,2) =0 (¢). Obviously, 0* =1 and 1+ = 0. Therefore
1,...,1,2)* = (n—1,1) =1 (),
(n—=1,1)t =(1,...,1,3) =0 (p),
1,...,1,3) =(n—-2,1,1) =1 (p),
(n—2,1,1)t =(1,...,1,4) =0 (¢),

(1, n—1)* =(2,1,...,1) =1 (p),
2,1,.., 1)t =) =0 (p),
n)* =0 =1 ()

This is a contradiction, since the congruence ¢ is non-trivial.

2 — Colloquium Mathematicum XLI.2
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COROLLARY 1. All algebras S, are simple (i.e. they have mo non-trivial
congruences).

3. Equational classes generated by the algebras S,. Fori =1,2,...,
we put

D __
A = (G;y oeny Qpy Qyy ey B;_y),y

where a = (a,,...,a;) €8, and a'*") = (...((a"”-)"'l)"'l ...)*l, the oper-
ation** being repeated i times.
LEMMA 2. Every algebra S, has exactly one proper subalgebra.

Proof. It is evident that the set {0, 1} is closed under all operations
of S,. Hence it forms the subalgebra of &, isomorphic to S,. Let
a = (ay,...,a,)€8,,a # 0,1. By the definitions of operations * and - we

have
*

a't = (agy ...y Gy, @ t+ay).

Therefore, a*~V*LY) — (a,4 ... +a,) = (n). Hence all elements of
the form [(»)']? with ¢ =1,...,n—1 are atoms of S,. Therefore, the
algebra G, is generated by every element a +# 0, 1.

Let S denote the class of all algebras isomorphic to S,,. Since all alge-
bras S, are finite, the class S is not equational. Let K = HSP(S). (For
a class of algebras R, the classes P(R), H(R), S(R) consist of all direct
products, homomorphic images and subalgebras of members of R, respec-
tively.) Let K, be the smallest equational class containing an algebra
isomorphic to S,.

LEMMA 3. Let A € K. A congruence lattice C(N) of all congruence re-
lations over U is distributive.

Indeed, C(A) is a distributive lattice as a sublattice of the distribu-
tive congruence lattice C({4, v, AD).

Therefore, we can apply to the class K the following well-known
Jénsson’s lemma [3].

LeMMA 4. If HSP(R) is an equational class of algebras with distributive
congruences, then every subdirectly irreducible algebra from HSP(R) belongs
to HSP,(R), where P,(R) denotes the class of all ultraproducts of members
of the class R.

The following corollary follows from Corollary 1 and Lemmas 2 and 4.
COROLLARY 2. The algebras isomorphic to S, and S, are the only sub-
directly irreducible algebras in the class K, .

The next corollary follows from Lemma 4 and from the fact that
the property “an algebra U is isomorphic to a Boolean algebra with the
new greatest element added” can be expressed in the first order language.
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COROLLARY 3. Every subdirectly irreducible algebra in the class K 1is
a Boolean algebra with the new greatest element added.

Evidently, all known corollaries to Jo6nsson’s lemma hold for K.
Particularly, the lattice of all equational subclasses of K is distributive
and &,8,,...,5, €8 are all subdirectly irreducible in the class
HSP({S,,, ..., S,,}). Therefore, the algebras S, are all finite subdirectly
irreducible in the class K. It would be interesting to find an equational
base for K. The classes K, have finite equational bases, but it is unknown
if K has also a finite base.

Note that for every a e € K, we have —a = a, a® = a,al = a.
Hence K, is the class of all Boolean algebras. For every a € U € K,,

—a=a, a°=a, a' =(arnat)va*.

Hence K, is the class of all regular double Stone algebras (for the
definition see [4]). All algebras from the class K are regular and all are
double Heyting algebras.
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