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REMARK ON INTERPOLATION
BY L-ALMOST PERIODIC FUNCTIONS

BY

S. HARTMAN (WROCLAW)

In [1] the notion of I,-set is discussed. We say that a set A in an
LCA-group @ is I, if any complex-valued bounded function on 4 can be
extended to an almost periodic function on G. The aim of this remark
is to look at these sets A for which every function on 4 can be extended
to an L-almost periodic (L-ap) function in the sense of Levitan.[4]. There
are several equivalent definitions of L-ap functions. We need two of
them. Before quoting them let us first recall that, for a compact K < G,
a (K, ¢)-almost period of f is a 7 @ such that
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Secondly, we fix the meaning of a relative density as follows: A set
E < @ is called relatively dense (in @) if there i3 a compact C such that
G =C+E.

The first definition we adopt is that given by Reich [6] who proved
its equivalence (for G = R) with the original concept of Levitan, which
was both formally stronger and more complicated.

Definition 1. A complex-valued continuous function f on an LCA-
-group G is called an L-ap function if, for any ¢ > 0 and any compact
K < @, there is a relatively dense set E>0 such that every re £ —F is
a (K, )-almost period of f.

For the sake of exactness it should be added that in Reich’s defi-
nition the compact sets K and C are supposed finite whereas we do not
admit this restriction. We shall return to this matter in a moment but
previously we write down the second definition.

Definition 2. A complex-valued function on @ is called L-ap if 1t
is continuous in the weak topology of the group @, i.e. in tha,t induced
by its Bohr compactification.

This characterization of L-ap functions is stated for G = R im-
plicitely already in [3] and explicitely in [5]. For arbitrary LCA-groups
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it is proved in [6], however, under assumption that the compact set C
satisfying F+C = G -is finite (strong relative density of FE). This is
no real objection. In fact, given ¢ and K, let U be a symmetric compact
neighborhood of zero element such that

If(t+h)—f(t) < ¢/2 for tc K and he U.

So, if 7 is a (K + U, £/2)-almost period, then 7+ h is a (K, ¢)-almost
period for every he U. Hence, if in Definition 1 we let E correspond to
K+ U and ¢/2, and choose a symmetric neighborhood W of zero such
that W +W < U, then (£ +W)—(E + W) consists of (K, ¢)-almost periods;
on the other hand, it is evident that E + W is strongly relatively dense.
So we are free to assume the strong relative density in Definition 1 as
well. It may be added that the weak continuity implies Definition 1 in
a simple manner and even in this strengthened sense, first for K finite
and then for K compact, in view of the fact that a weakly continuous
function has a uniform modulus of weak continuity on compact sets.
The converse implication is far from being obvious.

We now assume that the group G is metric separable. Then we have

LEMMA 1. The set LAP of L-ap functions in the space C(G) of continuous
functions on G endowed with compact-open topology is Borel.

Proof. We use (x) to express Definition 1 by means of quantifiers:
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All quantifiers in (**) can be made countable. For the first one this
is obvious. In view of o-compactness of G,

G = UlKn (Kn < Kn+l)7

and we can choose K and ¢ among K,’s. Since G is separable, we can
restrict z, v, and ¢t to a fixed dense countable set. Clearly, the set under
the last quantifier is open in C(G). Thus (*x) defines a Borel set. This
achieves the proof.

LeMMA 2. The set Cy,(G) of bounded functions in C(G) ts F,.
The proof is obvious. -

THEOREM 1. If every function on A can be extended to an L-ap function,
then every bounded function on A can be extended to a bounded L-ap function.
If every bounded function on A is extendable to an L-ap function, then every
function on A is extendable to an L-ap function. The necessary and sufficient
condition for any of these properties is that A has mo accumulation points
in the weak topology of G.
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Proof. The sufficiency follows immediately from Definition 2. Before
proving the necessity observe that if every bounded function on A can
be extended to an L-ap function, then A has no (strong) accumulation
point, and so, since G is separable, A is countable, 4 = {¢,}. If 4 had
a weak accumulation point in G, the function defined by Ve(t,) =n
would not be extendable to a weakly continuous function. "

Not so obvious is the proof that if any bounded function is extendable
to an L-ap function, then A still cannot have weak accumulation points.
It is clear that such a point could not belong to A. Thus we must prove
that A is weakly closed.

Lemmas 1 and 2 enable us to follow closely the method used by
Ryll-Nardzewski [7] for proving that I,-sets are weakly closed. Suppose
that A is not weakly closed and let t,¢ A4 be a weak accumulation point
of A. Then, for every function ¢ which is bounded on A4, the value @({,)
is the same for all L-ap extensions @ of ¢ and is thus completely determined
by ¢. Denote this value by w(gp). Obviously, w is a homomorphism of
the ring b(A) of bounded sequences with coordinate-wise operations and
coordinate-wise convergence into C, and so, according to a theorem of
Sierpinski [8], it is not Borel measurable unless it is trivial, i.e. of the
form ¢ —¢@(4,), where 1, is a fixed point in 4. Since this is impossible,
o cannot be Borel measurable. However, the graph {(¢,¥): ¥ = w(¢)}
of o in the product space b(A) x C is a projection of the set

{(p,y,P): e LAPNC,(Q); §/A = @, @(t)) = ¥y}

which, in view of Lemmas 1 and 2, is Borel in the (separable complete
metric) space C(G) x b(A) x C. Thus the graph of w is an analytic (Suslin)
set and this is equivalent to Borel measurability of o ([2], p. 398). We
arrived at a contradiction.

From now we will refer to sets admitting an L-ap interpolation in
the sense of Theorem 1 as to LlI,-sets. An immediate consequence of
Theorem 1 is

COROLLARY. The union of two LI,-sets is an LI set.
It can be easily shown that this is not true for I -sets.

THEOREM 2. If K is a compact set in G and A an LI set, then A+ K
18 an LI-set, i.e. every function which is continuous on A+ K has an L-ap
extension.

Proof. We must prove that A+ K is weakly closed and that every
(strongly) continuous function on it is weakly continuous. The first state-
ment is obvious since A is weakly closed and K a compact set. To get
the second it is enough to see that every weak accumulation point of 4 + K
is a strong one (i.e. a limit point) of 4 4+ K. This can be shown as follows:
Let t, be an arbitrary point of G. Since .1 consists of isolated points, the
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set A, = AN(t,— K) is finite. Since 4 has no weak accumulation points,
there is a weak neighborhood W of zero element such that t{,— K+ W
is disjoint with AN\ A,. It means that {,+ W is disjoint with (A\4,)+ K,
and so ¢, cannot be a weak accumulation point of A + K unless it is a weak
accumulation point of the compact set 4,4+ K, but then it must be one
of its limit points, since the weak and the strong topology coincide on
compact sets. The more, ¢, would be a limit point of A+ K.

LI, cannot be too ‘‘big’, e.g. they cannot be relatively dense, i.e.
no compact set K exists such that K+ 4 = @. In view of Theorem 1,
this is equivalent to the theorem saying that sets without weak accumu-
lation points in a separable LCA-group are never relatively dense ([1],
Part II).

On the other hand, an LI,-set needs not be very rare, it has not
even to be regular, i.e. the distance between each two of its points can
approach 0. This follows at once from Theorem 2. But even LI,-sets
in Z can be of fairly small lacunarity, for example, the set E of prime
numbers of the form 5k +2 or 5k +3 has no weak accumulation points
in Z, since every ne Z can be separated from EN\{n} by a weak neigh-
borhood determined by a single exponential ¢*™* with a suitable integer s.
Thus an LI;-set needs by no means be a Sidon set as must be every I,-set.
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