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The concept of an extremally disconnected resolution in the compact
case i3 due to Gleason [5] (see also Rainwater [12] and Hager [6]). For
an arbitrary Hausdorff space a construction of the extremally disconnected
resolution was given by Iliadis [7] and modified by Mioduszewski and
Rudolf [11], where a more general definition of extremally disconnected
resolutions was also provided. As shown by Mioduszewski [10], there
exist many extremally disconnected resolutions in their sense for a given
space.

In the present paper we define an extremally disconnected resolu-
tion (shortly, e.d. resolution) for an arbitrary T,-space and prove a new
existence theorem which depends on the factorization lemma from [1].
Considering the set of non-equivalent representatives of all e.d. resolu-
tions of a given space, we show that it is partially ordered by dense em-
beddings, and that each e.d. resolution can be obtained as a selector
from the greatest one. It is also shown that an e.d. resolution a: aX -~ X
is the greatest one if the map a is perfect.

A similarly general approach to e.d. resolutions is also possible by
means of some generalizations of uniformities, as indicated by Kulpa [9].

All maps in this paper are assumed to be continuous.

1. Preliminaries. A map f: X—Y is said to be skeletal provided the
preimage under f of each open and dense subset of Y is dense in X or,
equivalently, if

(1) Intgclyf~2(U) = Intxf(cly U)

for each U being open in Y.
A map

h: X 2N, ¥
is said to be érreducible ([11], p. 26) if
(2) clph(F) # ¥




58 A, BLASZCZYK

whenever F, F' c X and F # X, is regularly closed; regularly closed,
shortly, r.c., means that F' = clyIntyF.

It is known ([11], p. 27) that each irreducible map h is skeletal
and that

(3) for each U open in X, there exists a V open in Y such that
01xU = clxh_l(V).
The converse is also true:
THEOREM 1. If & skeletal map h: X 222> ¥ satisfies (3), then it is
irreducible.

Proof. Let F = ¢clx U for some U open in X. There exists, by (3),
a set V open in Y for which clyh~!(V) = F. Thus h(F) < cly V. Suppose
that h(F) is dense in Y. Hence V is dense in Y. Therefore, ' = X since
h is skeletal.

A set is regularly opem, shortly, r.o., if its complement is r.c.
A map h: X - Y is called r.0.-minimal ([11], p. 30) if the family
{GN k7' (U): @ is regularly open in X and U is open in Y} is a base
in X.

LEMMA 1. A map

f: X2,y
18 trreducible amd r.o.-minimal iff the family
{F"HUO)NnIntxelgf~(V): U and V are open in Y}

18 a base in X.

Proof. Let

B = {f'(U)nIntxelgf(V): U and V are open in Y}

be a base in X. At the first we shall show that f is skeletal. To do this let us
suppose that

fH@)nIntgelef(T)NfH(V) =9,

where G is dense and open in ¥ and Intxclxf~'(U)N f~!(V) is a non-empty
set from the base B. Then GNUNV = G and, in consequence, UNV = @,
G being dense. Hence

Intyelef(U)NfH(V) =0,
a contradiction.
The r.o.-minimality is obvious. .

It remains to show that f is irreducible. Let H be open in X. Hence
H = \J{W: We%}, where % c B. Put

G =U {UnV: Intyelyf~(U)Nf 1 (V)e¥}.
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It is easy to check that clyH = clyf~'(G). Now, the irreducibility
follows from Theorem 1.

The converse implication is obvious.

Recall that a space is extremally disconnected (shortly, e.d.) if the
closure of each open subset of it is open (see Stone [13]).

The following version of the factorization lemma (Lemma 2) from [1]
will be used in the sequel:

FACTORIZATION LEMMA . If f: X 22° , Y is skeletal, X is e.d., and X
and Y are T,spaces, then there exists a unique (up to homeomorphism)
factorization X -2~ Z LN, ' of f such that h: Z - Y 4s trreducible and
r.o.-mintmal, Z is T, and e.d., and g is a skeletal map onio Z.

THEOREM 2. If a map f: X onto Y, where X is a T,-space and Y is
e.d., i8 irreducible and r.o.-minimal, then it is a homeomorphism.

Proof. Since Y is e.d. and f is skeletal, we have, by (1),
Intyelxf Y(U) = Intxf'(cly U) = f~'(clp U) for each U open in Y.

Thus, according to Lemma 1, the family
B = {fcly, UNnV): U and V are open in Y}

is @ base in X. Hence f is an open map. For every two different points
from X, there exists an element from B which contains exactly one of
these points. Thus f is one-to-one. Therefore, it is a homeomorphism.

2. The set of e.d. resolutions of a given 7' -space. An e.d. resolution
is an irreducible r.o.-minimal map of an e.d. 7,-space onto a given one.
We say that e.d. resolutions u: uX — X and »: »X — X are equivalent
if there exists a homeomorphism ¢: uX — X such that vop = u.

LEMMA 2. If h: X 222, Y i3 irreducible and r.0.-minimal, and X is
a T,-space, then card X < 2°°"%7 where I is the topology on Y.

Proof. By Lemma 1,

B = {Intycly A~ (U)nh~'(V): U and V are open in Y}
is a base of open sets in X. Since X is T,

card X < 2card98 < 2card.7'.

From this lemma it follows immediately that

THEOREM 3. For each To;space X there exists the set Res X consisting
of mon-equivalent e.d. resolutions such that each e.d. resolution of X is
equivalent to one from ResX.

In the sequel we restrict our considerations to the fixed set Res X
of e.d. reselutions of a given 7T',-space X.
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We say that an e.d. resolution u: uX — X majorizes an e.d. reso-
lution »: »X — X (shortly, u > ») if there exists ¢: vX — uX such that
no@ = .

LEMMA 3. If the map g: ¥ 2% Z is irreducible and r.0.-minimal, and
X L5 ¥ -9, Zis skeletal, then so is f.

Proof. Let G be dense and open in Y. Since ¢ is irreducible and r.o.-
minimal, ¢l;¢g(Y\G) is nowhere dense in Z (see [11], p. 30). We have

(gof) 7 (Z\elzg(Y\G)) = f1(@).

But (gof)™'(Z\cl,g(¥\@)) is dense since gof is skeletal. Thus
(@) is dense in X.

By this lemma we infer that the map ¢, realizing the inequality
u = v, is skeletal.

LeMMA 4. If pu: uX — X 48 an e.d. resulution, then

(4) pof = pog =>f =g
for arbitrary f and g being skeletal maps from a T, space Y into uX.

Proof. Suppose that uof = uog and f(x) # g(x) for some z, xeY.
Since Y is a T, -space, hence, by Lemma 1, there exist U and V open
in Z such that the set

-

W = Int,xcl,zu~ (U)A u=}(V)

contains exactly one of the points f(x) and g(x). But 4X i8 e.d., and
f is skeletal; then, by (1),

fHW) = (Int,xelxp ™ (D) O f7H {(p™H(V))
= [ eluxp (D)) (pof71)(V) = Intyely (pof) " (U)N(uof) (V).
Analogously,
g~ (W) = Intyely(uog)~(U)N(nog) (V).

Since uog = pof, we have g~'(W) = f~!(W). Suppose that f(x)eW
and g(z) ¢ W. Then zef~'(W)\g (W), a contradiction.

By Lemma 4 we infer that the map ¢, realizing the inequality u > »
between e.d. resolutions is unique. A standard calculation leads to the
conclusion that

THEOREM 4. The set Res X s partially ordered by >.

We shall show that e.d. resolutions are, in fact, comparable by
embeddings. This follows from Lemmas 5 and 6.

LEMMA 5. If in the decomposition X —I—~ ¥ —2 Z the map f is skeletal,
g 8 irreducible and (gof)(X) is dense in Z, then f(X) is dense in Y.
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Proof. Suppose that there exists a non-empty open set U such that
U = Y\f(X). Then f~'(clyU) = f~'(cly U\U) is nowhere dense in X,
f being skeletal. Since g is irreducible, there exists, by (3), a non-empty
open set V, V < Z, such that cl, U = clyg~'(V). Hence f~*(clyg~*(V)) is
nowhere dense in X. On the other hand, (gof)~'(V) is open and non-empty,
since (gof)(X) is dense in Z. But (gof)™'(V) < f~'(clpg~'(V)), a con-
tradiction. | ‘

LEMMA 6. If a decomposition X L~ ¥ —— Z is irreducible and r.o.-
minimal, then f, regarded as the map f: X — f(X), is irreducible and r.o.-
minimal.

Proof. By Lemma 1, the family

B = {Intycly(gof) " (U)n(gof)~"(V): U and V are open in Z}
is a base of open sets in X. Hence

B’ = {Intxelgyf(U')nf(V'): U and V' are open in f(X)}

is also a base in X. Thus, by Lemma 1, f is irreducible and r.o.-minimal.

THEOREM 5. If u: uX - X and v: vX — X are e.d. resolutions and
u =, then the map ¢, realizing this inequality, is a dense embedding.

Proof. By Lemma 5, the map ¢, regarded as ¢: vX — ¢(»X), is
irreducible and r.o.-minimal and, by Lemma 4, ¢(vX) is dense in uX;
thus ¢(»X) is e.d. Then, by Theorem 2, ¢ is a homeomorphism.

3. The existence of e.d. resolutions. Iliadis [7] has constructed, using
ultrafilters, for each Hausdorff space X, an irreducible but only 6-con-
tinuous map o*: wX — X from an e.d. space X onto X (see also Iliadis
and Fomin [8]). Mioduszewski and Rudolf [11] have modified this con-
struction so that the map »* becomes continuous. Moreover, it was
proved in [10] that the modified Iliadis e.d. resolution is the greatest one.

We propose a way which leads to all e.d. resolutions for an arbitrary
T,-space. The first step in the construction is the following

LeMMA 7. For every space (X,T), there exists an e.d. topology I’
on X such that the identity (X, ') - (X, T) is skeletal.

Proof. Let J be the topology on X. Consider the set S of topologies
on X such that

(I) if I8, then I <« J';

(IT) if J'€8, then the identity map ¢: (X,7') — (X, 7)) is skeletal.

We prove that there exists a maximal member in S.

Let L be a chain in 8, and let us examine the topology J™* generated

by L. Since L is a chain, the family | JL is a base for *. This implies
T *e8. Hence it is a bound of L.
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Let 7 be a maximal element in S. It remains to show that (X, T )
is e.d. Suppose that there exists UeJ such that clz U¢ﬂ~' . Then the topo-
logy &, generated by T U {el# U}, belongs to 8 and is greater than T ;
a contradiction.

Composing Lemma 7, Factorization Lemma and Theorem 5, we get

THEOREM 6. For each T -space, there exist e.d. resolutions; moreover,
there exist one-to-one e.d. resolutions which are minimal.

This theorem asserts that the set ResX is non-empty. Let Y

be the disjoint union of all domains of maps from Res X. Clearly, Y is e.d.
Using once again Factorization Lemma for the map

f: Y-, x

induced by maps from Res X, we obtain the greatest e.d. resolution
a: aX — X (cf. [1], where the construction was performed in the Hausdorff
case). .

The present construction falls under a general categorial scheme
given by Freyd [4], dual to the construction of the Cech-Stone compacti-
fication.

4. Properties of the greatest e.d. resolution. In this section we show
that each e.d. resolution can be obtained by a selection from the greatest
e.d. resolution. The following lemma will be used:

LEMMA 8. If a map
f: X ont:o_> Y

18 irreducidble, r.o.-minimal and f(F) = Y, then F s dense in X.

Proof. Suppose that F is not dense in X. There exist, by Lemma 1,
open sets U and V of Y such that

FnIntycelxyf~(U)Nnf (V) =60 and Intyelyf " (U)nfYV) #0.

Hence FNf'(UNV) =@ and UnV #@. Thus f(F)n UNnV =@,
a contradietion.

THEOREM 7. If F c aX and a(F) = X, then a|F: F - X is an
e.d. resolution. Moreover, if K c aX, F # K and a(K) = a(F) = X,
then a|F and a|K are non-equivalent e.d. resolutions.

Proof. To show the first thesis, let us note, by Lemma 8, that F
is dense in aX. Hence it is e.d. By L.emma 1, it is easy to see that the
restriction a|F: F — X is irreducible and r.o.-minimal.

Suppose that a|F: F - X and a|K: K — X are equivalent e.d.
resolutions. Then there exists a homeomorphism ¢: F — K such that
(a| K)op = a|F. Let us consider the diagram
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aX
[ c
J
X__@L(_K

where ¢ and j are inclusions. We have aoj = aoio¢g. According to Lemma 4,
we get iop = j. Thus F = K, a contradiction.

Example. Let N be the set of all natural numbers, and let wN
= Nu {2} be the Alexandroff one-point compactification of N. There
exists a function

a: BN 2%, wN

mapping the Cech-Stone compactification SN onto wN and being the
identity on N. It is easy to see that a is irreducible. Since SN is regular,
it is also r.o.-minimal. By Theorem 5, a: SN — wN is the greatest e.d.
resolution of wN. Since the compact e.d. resolution is unique, there exist
many non-compact e.d. resolutions of wN. There exist exactly 22° non-
-equivalent e.d. resolutions of wN. Indeed, by Theorem 7, it suffices
to note that a='(2) = AN\ N and card(BN\N) = 2°¢ (see Engelking [2]).

From Theorems 7 and 5 we get

THEOREM 8. For each set 8 — Res X, there exisis the supremum of
S in ResX.

THEOREM 9. The supremum of the set of all minimal e.d. resolutions
i8 equal to the greatest e.d. resolution.

Proof. It suffices to note that, according to Theorem 7, each mini-
mal e.d. resolution can be obtained by choosing one point from a~'(x)
for all zeX.

5. The greatest e.d. resolutions are perfect.

LEMMA 9. If a: aX — X 48 the greatest e.d. resolution of X, X being
a T-space, and x is an arbitrary point of X, then there does not exist a filter
F of closed-open sets of aX coniaining the family

{cl,xa™'(U): U is open in X and xeU}
and such that N{a ' (2)NG: GeF} = 0.
Proof. Consider the filter ¢ being Ijla.xima,l in the family of filters
of closed-open sets containing #. Put X = aXU {&}, where
B, ={{&ua(U)NG: U is open in X, zeU and Geé&}

is a base of neighbourhoods of & and the neighbourhoods of points of
aX are such as in aX. We show that

(5) if @ is a closed-cpen set in aX, then Ge¢ < £eclxG.
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Indeed, if £eclz@, then GN H # G for each Hef. Thus Geé, since §
is maximal. .

Suppose that £¢clyzG. Then there exists a W being open in X such -
that &e¢W and WN@Q@ =@. Hence GNel,x(WNaX) =@. But we have
cl,x(WnaX)eé Thus G¢é.

Clearly, for each closed set F, F c aX, we have F = aXneclzF.
Therefore, by (5), we get

(6) for each closed-open set G, G < aX, we have clxG = G <G ¢¢,
and clz@ = GU {&} < Geé.

Let u: X - X be the map defined by the formula

(7) p(§) ==, p(y) =a(y) for each yeaX.
Let us consider, on the set j, the topology generated by the family
? = {up '(U)neclxG: U is open in X and @ is closed-open in aX}

and let us denote such a space by uX. By (6), # is a base in- uX,
closed with respect to finite intersections. Clearly, u: uX — X is
continuous.

We show that uX is a T,space. Note that the topology induced
in aX from that of uX is the given one. Since aX is a T,-space, points
of uX lying in aX are T,-separated. To see that & and y, where yeaX,
are T,-separated, consider two cases.

Case 1. Let y¢a~'(x); then there exists a set U open in X, which
contains exactly one of the points x and u(y). If xeU and u(y)¢U,
then x~!(U) is an open neighbourhood of & which does not contain y.
If u(y)eU and ¢ U, then u~'(U) is an open neighbourhood of y and
E¢u=(U).

Case 2. Let yea™!(x); then, by the assumption, there exists a @
such that y¢ G. Hence, by (6), clgG is an open neighbourhood of £ in
uX and y¢cliz@.

Now we show that uX is e.d. If V and W are open in xX and disjoint,
then @ = cl,x (VN aX) and H = cl,x (W n aX) are closed-open and disjoint
in aX, aX being e.d. On the other hand,

cl,xVnaeX =cl,x(VnaX)naX =cl,x(VNneX) =@,

since aX is dense in uX. Analogously, cl,xWnaX = H. Suppose that
cl,xVnel xW #@. Then £ecl,x VN cl,xW and, in consequence, GN H e £.
But GNn H = @, a contradiction.

It remains to show that u: uX — X is irreducible and r.o.-minimal.
To do this we show that, for each closed-open set G, G = aX, the set
clxG is closed-open in uX. In fact, if Ge¢é, then, by (6), clyG = GuU {&}.
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Hence we obtain uX\clzx@G = aX\G. But e X\G¢§, thus, by (6), aX\G
= clg (aX\@). Therefore, uX\clz@ is open in uX. We do the same
in the case where G¢§.

The above shows that u is r.o.-minimal in view of the form of sets
in the family £ generating the topology in uX.

It remains to show that u is irreducible. Assume that u(G) is dense
in X and @ is closed-open in uX. Clearly, £¢ @ since a: aX — X ig irre-
ducible. We show that a(G@naX) is also dense in X. Suppose that there
exists an open set U, U c X and U # @, such that Una(GNnaX) =@A.
Since Unu(G) #90 and u(G) = {x}va(G@naX), we have ze¢U. Thus
cl,xa }(U)eF < & On the other hand,

cl,xa ' (U)nGnaX = 0.

But GnaXeé, a contradiction. Thus we infer that a(Gn aX) is dense
in X. Since a is irreducible, @GN aX = aX. Therefore, G being closed in
uX, G = uX, which means that u is irreducible.

Thus it is shown that u: uX — X is greater than a: aX — X;
a contradiction.

LEmMA 10. If pu: puX — X 48 an e.d. resolution, then, for each xeX,
u~l(x) i a Hausdorff subspace of uX.
Proof. Indeed, if y,zeu'(x), then there exists a set
W = clﬂX:“-l(U)mll'_l(V)a

where U and V are open in X, which contains exactly one of the
points ¥ and z; uX being a T,-space. Hence the set cl,xu'(U) contains
exactly one of these points. Thus the set cl,yu~'(U), being closed-open,
separates ¥ and z in the Hausdorff sense.

THEOREM 10. An e.d. resolution a: aX — X i3 the greatest one iff a
i8 perfect, i.e., a(F) is closed whenever F is closed and a~'(x) is compact
Hausdorff for each xeX.

Proof. I. Suppose that a: aX — X is the greatest e.d. resolution.
At the first we show that o~ !(x) is compact Hausdorff for each x<X.
By Lemma 10, a!(z) is Hausdorff. It is easy to see that the family

B = {a ! (x)N@G: G is closed-open in aX}

is a base of open sets in a~'(x). To prove that a~!(x) is compact take
a filter 4, ¥ < B. Comnsider in aX the filter

F = {cl,xa '(U): U is an open neighbourhood of z}u
U{H: H is closed-open in oX and Hna '(z)c¥%}.
Clearly, if M ¥ = O, then N {a ' ()N G: GeF} = . The last equality
contradicts Lemma 9. Thus N¥ #* 9.

5 — Colloquium Mathematicum XXXII.1
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Now we check that a(@) is closed whenever G is closcd-open in oX.
Suppose that zeclya(G)\a(G). Thus the family

F = {G}u{cl,xa ' (U): U is an open neighbourhood of z}
is a filter of closed-open sets of aX. Since GNa~'(x) = @, we have
Ni{e " (@)nH: HeF} = 0.

But this contradicts Lemma 9.
Now we prove that a(F') is closed for each closed ¥, F < aX. Let
zeX be given such that x¢a(F). Hence a '(z)nF = @. Since

B = {a"}(U)nG: U is open in X and G is closed-open in aX}

is a base in aX, for each y<a~'(x) there exists a We®B such that yeW and
WNnF =@. But a'(x) is compact, whence there exists a family
{Wy,..., W,} =B such that

a~l(z) c W,u... UW, c aX\F.

Put H = X\a(aX\(W,U... UW,)). It is easy to see that zeH
and Hna(F) = A. It remains to show that H is open in X. Let W, be
of the form W, = a!'(U,;)Nn@Q,;, where U, are open in X and G; are closed-
-open in aX for ¢ =1,...,n. Let us evaluate

aX\(W,u... UW,) = (e X\W)Nn... n(eX\W,)
= r% [(aX\a“l( Uy)v (aX\G,-)] = .rn\[a_l(Fi)UEi].,

where E; = aX\@G; are closed-open in aX and F; = X\ U, are closed
in X. Clearly,

é[a-‘(Ff)uE,-]

is a union of sets of the form a~!(F)N E, where F is closed in X and E
is closed-open in aX. But

a[(a(F)NE)] = Fna(E)

is closed since a(F) is closed, ¥ being closed-open in aX. Thus the set
a(aX\(W,u... UW,)) is closed as a finite union of closed sets.

II. Suppose that u: uX — X is an e.d. resolution greater than
a: aX - X. By Theorem 5, there exists a dense embedding i: aX < uX
such that ot = a. Let yeuX\aX and 2 = u(y). Since a~'(x) is compact
and, by Lemma 10, x~'(x) is Hausdorff and a™'(x) = u~'(x), there exists
a closed-open set H, H < uX, such that ye H and Hna !(z) = @. Clearly,
a(HNnaX)is closed in X, since HNaX is closed in aX. But x¢a(H N aX)
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and there exists an open set U, U = X, such that xe U and Una(H N aX)
= @. Thus

(8) a (U)nHnaX =0.

On the other hand, u~'(U)NnH # @ in view of ye HNnu~'(U). Since
aX is dense in uX, .
u(U)nHNnaX # 0.
But u ' (U)naX = a !(U). Hence a *(U)Nn HN aX +# @, a contradic-
tion to (8).
As a corollary we have

THEOREM 11. If X 4s not e.d., then the smallest e.d. resolution does
not exist.

Proof. Suppose that X admits the smallest e.d. resolution u: uX — X.
Hence, by Theorem 7, the greatest e.d. resolution a: aX — X is a one-
-to-one map. By Theorem 10, a is a closed map, hence it is a homeomor-
phism. Thus X is e.d.

THEOREM 12. For ¢ =1, 2, 3, the following statements are equivalent:
(I) X 48 a T;-space;
(II) aX ¢s a T;-space, where a is the greatest e.d. resolution;

(IIT) puX is a T;-space for each e.d. resolution u: uX — X.

Proof. 1. (I) = (II). Let X be a T,-space and let x<X. Hence
a '(z) is closed in aX. By Lemma 10, for each yeaX, {y} is closed
in a *(a(y)), and so in «X. Thus each point of aX is closed as a subset,
which means that «X is a T,-space.

If X is a Hausdorff space, then every two points y and 2 such that
a(y) # a(z) are separated in aX by open and disjoint sets. If a(y) = a(?)
and y # 2, then y and 2z are, by Lemma 10, separated in the sense of T's.

It is known (see Engelking [3]) that the perfect preimage of a T';-space
is a T,-space.

2. (IT) = (III). This implication, by Theorem 5, is obvious.

3. (III) = (I). In particular, aX is a T,-space. We show that a~'(x)
is closed in aX for each z¢X. Let y be a point of X such that y¢a™'(2).
We show that y¢cl ya ' (x).

Case 1. There exists an open set U, U < X, such that a(y)eU
and a '(U)Nna '(z) = B. Since yea™'(U), yécl,xa ().

Case 2. For each open neighbourhood U of a(y), a ' (U)Nna~!(x) # 9.
Hence a™'(xz) = a~'(U) for each open neighbourhood of a(y). Since aX
is T,, for each zea'(x) there exists a closed-open neighbourhood of y
which does not contain z. Suppose that each closed-open neighbourhood
of y intersects a~!'(x). Then the family

= {G@na'(x): G is a closed-open neighbourhood of y}
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is a filter of closed sets in a~!(x). But each z from «~!(x) is missed by
some @G. Thus (& = O, which contradicts compactness of a~!(z) (see
Theorem 10). Hence there exists a closed-open neighbourhood G of y
such that Gna~'(x) = O, and so y¢cl,xa '(x).

Since a~!(z) is closed for each z¢X and a is a closed map, {z} is a
closed set for each zeX. Thus X is a T,-space.

From [3] it is known that the property “to be a T;-space” is inva-
riant under perfect maps for ¢+ = 2, 3. This completes the proof.
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