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In 1941, Mahler [2] developed an analogue of Minkowski’s geometry.
of numbers, where the roles of Z, @, and R were played by F,[T], F,(T),
and F,{T}, respectively; here F, is a finite field with'q elements, T is
an indeterminate and ¥, {T} denotes the field of series

£=a,T+a, T '+... (a¢eF,),
the absolute value in this field being given by

i ¢ if & #0witha, #0.
If E is the vector space of n-tuples of F {T}, a convex body in E in
the sense of Mahler [2] means a set defined by an inequality of the type

(1) | N@)<1

where N is a norm function in E. If r,, denotes the maximal compact
subring of F,{T'}, then a body defined by inequality (1) is an open and
compact 7,-module, i.e. an F, {T}-lattice in F in the sense of Weil [3].
Conversely, any F, {T}-lattice L in E can be defined by an inequality
of typne (1). Namely, we just take

(2) N(z) = Inf |5|‘1;
§#£0, éxel

this particular norm function is said to be associated with F,{T}-lattice L.
It is the only norm function taking its values in the set {0, ¢*', ¢*?% ...}
and such that L is given by (1).

We notice now that F, {T'} is the completlon k, of k = F,(T) at
the place « of k for which ITI,, > 1, and that F,[T] is the ring o, of those
elements x of &k for which ord,(x) > 0 for every place v # u of k. Keeping
this in view, let k be an arbitrary A-field of characteristic p # 0, having F,
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as its field of constants. Let » be an arbitrary place of k¥ and let %k, be
the completion of % at u; let o, denote the ring of u-exceptional integers,
i.e. those elements x of k¥ such that ord,(zx) > 0 for every place v # u
of k.

In this paper we shall extend the results of Mahler to the case where
the roles of integers, rationals, and reals are played by o,, k, and k,,
respectively. Our notations are exactly as in Weil [3] and we shall use
them without much explanation. The Haar measure in kI will be that
for which 77 has measure 1; one may notice that, in the case considered
by Mahler, this measure is the same as defined in [2]. The genus of %
will be denoted by g, and the degree of the place » will be denoted by d,
so that the module g, of %, is ¢°; E will denote the space of n-tuples of
elements of k, and E,, for any place v of k, will denote the space of n-tuples
of elements of k,.

We first notice that o, is discrete in k,. For, let U be a compact
neighborhood of 0 in k,; then U x [] r, is a compact neighborhood of 0

v#£u

in k,. As k is discrete in %k, it has only finitely many points in U x [] r,,

O¥EYU

which means that o, has only finitely many points in U, or that o,nr,
is the finite set F,.

THEOREM 1 (Minkowski-Mahler). Let L, be a k,-lattice (“convex body”)
in E, of measure greater than ¢"9~V. Then there i8 a mon-zero point
T = (&yy...42,) 0 L, with each x; in o,.

Proof. Let 4 denote that Haar measure on E, for which
w([]) =1

for every basis ¢ of F over k, and consider the coherent system of lattices
L =(L,),, where L, =r; for » - 4« and L, is the given lattice L, for
v = u. Then

") < meas(L,) = u([ ] L,) = ¢*7,
v -
so that —n(g—1)— 8(L)> 0. Thus
ML) = A(L')—n(g—1)—6(L) > 0,
and hence there exists a non-zero element z in

A(L)=En [ | L,

i.e., # eL,Nol.
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COROLLARY. Let ¢,(2), ..., ¢;(?) be 1 independent linear forms in the
variables z,, ..., 2; with coefficients from k,, and let A be the determinamt
of these linear forms. If o,, ..., o, are integers such thai

3) ¢ > g4l (e =e1t+... +ea)
then the inequalities
(4) Pl < gy, 1<Ai<I,

have a non-zero solution in o).

This is an immediate consequence of Theorem 1 by mnoticing that
inequalities (4) define a k,-lattice of measure ¢2|4|;".

Remark. Let L, be any k,-lattice in E,. It is well known that there
exist ! independent vectors e¢,,...,6 in L, such that the vector

z = q)101+ coe +¢,0‘
is in L, if and only if |¢;|, < 1 for 1 < A <. The ¢, are linear forms ¢,(2),
and thus L, is defined by the inequalities |¢,(2)], <1, 1 <A<

In view of this remark, the result of the Corollary is as general as
the result of Theorem 1.
Let, again, L, be a k, lattice in E, and let

(8) N(@)= Inf e’

a#0,a-z€L,,

be the associated distance function. If V = ¢;, denotes the measure of L,,
then the measure of the lattice N(z) < ¢, is ¢ V. If we choose

g—1 s
=== |41
[ 5]+
then ¢*V > ¢"°~Y, and hence, by. Theorem 1, there exists a non-zero
point x in o}, satisfying

N@) <g<giHevm

Thus, if
(6) o, = Inf N(2)
0szeo],
is the first minimum of L,, then
(7) oy < qa—l+d V—-lln.

Let o, be attained at a point V) of o® and let o, be the infimum
of the set

{N(2): @ in o} and z independent of z"}.
Let o, be attained at #/* and define ¢, to be the infimum of the set
{N(z): # in o® and z independent of =" and z*}.
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Continuing, we obtain
(8) q‘:zl = 0, = N(2) <...< q;" = 0, = N (™).

We notice that the k,-lattice N (r) < ¢ contains at least ¢ independent
points of o” (namely, 2, ..., 2®) and t.hat the k,-lattice N (x) < q%™!
contains at most those points of oF which are dependent on z(V, ..., ¢V
over k,. In particular, ¢;f is the least power of g, such that N (x) <@y
has at least ¢ independent points of o;. The quantities o, ..., ¢, Which,
in particular, depend only on L, will be called the successive minima of L, .

THEOREM 2 (Minkowski -Mahler). Let L, be a k,-lattice in E, of measure
V, and let oy, ..., o, be the successive minima of L,. Then

(9) V' .o, <qn(a+d—l) V-1

Moreover, if 2V, ... ac"‘) are defmed as above, then
(10) Idet(a;}‘) e < qn(a+d—l)

Rema.rk In the case considered by Mahler [2], g=0,d=1, and
hence ¢, ... g, = V! and |det(z{")], = 1, so that det(z}") is a non -Zero

element of F These are Mahler’s results

Proof. Let us denote by =, a prime element of k,.

(a) Since N (afa")) =1, the k,lattice generated by the points
aya®, 1<i<m, is contained in L,, and hence .
(11) o7t ... o5t det (af)], < V

Since det(x{’) is a non-zero member of k, and |det(z{"),<1 for
each v # w, we have, by Artin’s product formula,
(12) , det (7)1, >
and hence, by (11), V - '< 0y ... 0,. This proves the ﬂrst mequahty in (9),.
as well as the first 1nequal1ty in (10).

(b) Let E© denote the zero subspace of E and, for 1 < i < n, let E®
denote the subspace of F generated by 2, ..., 9. Let L = (L,), be the
coherent system of lattices belonging to E defined by

L, if v = u,
(13) Lv = .
Ty if v £ u.

Let z, be a prime element of k, and let z = a;, 1. we shall also consider z
as an idele (namely, 2z, = n;', 2, = 1 for v # u). We put

(14) U(L) =[] L..

Then, for any integer é,
Enz*U(L) = {reoy: N(x)<q’}.
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In particular, by what has been said just before Theorem 2,
En5'U(L) < E¢Y,
and hence
(15) EYN5 1 U(L) = B V2571 U(L).
(c) Let M = (M,), be a coherent system of lattices belonging to a
vector space E of dimension n over k; let E be a subspace of F of dimension

r, and let
M, =E,nM,.
It is obvious that M = (J1,), is a coherent system of lattices belonging
to E, and that

A(M) = En[] A,
v
is the same as En[[M,. We shall denote by 1(M) the dimension of A (M)
v
over F,. In case £ = EY, 7(M) will be denoted by 1;(M). Put
(16) D(M) = ¢~ "™, (U(M)).

In case E = E®, D(M) will be denoted by D,(M).

If 2z is any idele, denote by M the coherent system (2,M,),; it is
obvious that zM = 2.

Cram. If z is such that |2,|,> 1 for all v, then

(17) D(zM) > |2y " D(M),
where, as usual, |z|, denotes []|z,l,.
v

To prove (17) we apply the Riemann-Ror_s_h theorem to the coherent
systems of lattices 2 and M belonging to E and we get

2(zM) = A(zM) = A((zM)')— 6(z M) —r(g—1),
M) = (M) = A(M')— 8(H) —r(g—1).
Sinee |z,|,> 1 for each v, we have z,M, > M,, so that (s,M,) = M,
for all v, and hence
AM))< A(H).
Consequently,
measure in £, of U(M)
measure in £, of U(zM)

-

M) =1eM) > q-d(M)+o(eM) = = 2|5

Also
p(U (M) = p(zU(M)) = |27 u(U(M)).

11 — Colloquium Mathematicum XXXVIII.2
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Multiplying the last two relations, we get (17).
If, in particular, z is such that ord,(z,) = —1 and 2z, =1 for all
v # 4, then 2|, = ¢,, and hence

(18) D;(# M) > ¢" " Dy(M) (>0 any integer).
(d) Let us now return to the coherent system (13). In view of (15),
L@ L) = A, (257 L),

and hence
(19) D24 'L) = D,_, (% 'L), 1<i<n
(ord,(2,) = —1, 2z, =1 for v # u).
Finally,
A L) > —8(z L) —n(g—1),
and hence
(20) D, (¢ L) < g"0 V.

We can now easily complete the proof of Theorem 2. In fact,
by (18), (19) and (20) we have
"0 > Dy (&7 L) = Dy (11 L)
gn~n—1D,  (¢*»-1"'L) = ¢n~*»-1D,_, (z’n—l'e‘n—zzen—z"lL)

q&‘n“n—l)"‘z("n—l—%—z) _D”_2 (z%—z-lL) = ...

\ARY,

> qs‘ —Gn—1)+2(¢n_1—6n—2)+--~+(”-1)(92-31)Dl(z‘l—lL)
— q:‘n+...+e2-(n-—l)el‘“(zel'_l U(I/))

—_ q:‘,,+...+02— (n—1)e; qﬁ(“l'l),u(U(L))

=0y...0,4;" V.

This proves the second inequality in (9). By (11) we get
ldet ()], < 01 ... 0, V < g"0+5Y,

which is the second inequality in (10), and the proof of Theorem 2 is
completed. _

Remark. Notice that the proof of Theorem 2 is like the first proof
in [1]. It might be interesting to give proofs of that theorem similar to
the second and third proofs in [1]. '

n

Successive minima of the dual lattice. Let L, be a k,-lattice in K, = K
and let

(21) L, ={y in E,: |z y|,<1 for all # in L,},

where z-y means ) 'z;y;.
i
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If 2O, ..., 2™ is a basis of the r,-module L, and if 4, ...,y™ are
found such that

(22) d.y =¢,, 1<i,j<n

then one checks easily that L, is the r,-submodule of E, generated by
y", ..., y™. In particular, L, is a k,-lattice which we shall call the dual
lattice of L,.

THEOREM 3. Let o0y, ..., 0, be the successive minima of the lattice L,,
and let o),...,0, be those of the dual lattice L,. Then

(23) 1< 00,1 < GOHY,  1<ig<n.

Proof. Let 2, ..., 2™ be a basis of L, as an r,-module, and let
¥y, ..., y™ be the basls of the r,-module L, given by (22). If we write

any vector T a8
n

(24) 2 ()2, &= be(w)y“’,

=1 =]

then a; and b; are linear forms in =,

(26) a;(x) =Za'ijwj’ by(w) = Zbﬂwj’
j ]

and L, and L, are given by the inequalities N(z) <1 and N'(»)<1,
respectively, where

(26) N(x) = Max |a;(x)ly,
i

(26") N' (@) = Max [b;(2)],.
)

Since, for any vectors » and y, by (22), (24), and (25) the équalities

Zwiyi =%y = Zai(w)b{(y) Zaijbzleyl

1,4,

hold, we have

2 @by = Oy,
i

and hence B’ = A~', where A = (a;) and B = (b;).
Let now 2%, ..., 2™ be n points of o? which are independent over k,
and which are such that

(27) N (@) = g;.
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Let Z be the matrix whose columns are 2!, ..., 2™ and let W be
the adjoint matrix of Z; write

w® w(?, ..., wd
W = « e e = e o o o o o eofe
w™ wi™, ..., wl

Then, of course, w®, ..., w™ are all in o*. Now
(det A)"'adj(AZ) = (adjZ)B’ = WB',
and hence, by (25),
(28) b;(w®) = (det 4)")(i—j entry in adj(AZ)).

Since, by (25), AZ = (a;(2")) and since each entry in the I-th column
of AZ is not greater than o, in absolute value, it follows from Theorem 2
that

li—j entry in adj(42)l, < [ [ 1< 07 g"0+* Vet A,
1#3

and hence, by (28),
I (D), < 071 g™+, 1<,
Thus N’ (w¥) < 671¢"?+%-Y, Since 0, < ... < 0,, We see that
N (), N'(0%+D), ..., N'(w™)
are all not greater than o;!q"?+%~Y, In other words, the k, -lattice
N'(w) < o7 g"0+*Y

contains the n» —i-+1 independent points w®, ..., w™ of o". Conse-
quently,
a;u-i+l < Ui—lqn(ﬁd_l)

proving the second of inequalities (23).
To prove the first of inequalities (23), choose n independent points
20 ..., 2™ of ol such that

(27" N(z") =6, 1<I<n.
For any i, 1 < ¢ < n, the conditions
(29) Z0.2 =0, 1<I<n—i+1,

define a subspace of dimension i —1. Hence, not all of 2", ..., 2 can
satisfy (29) and, consequently, there exist 4 and g, 1<A<n—1+1,
1< u <1, such that

z’(l) .z(l-‘) # 0.
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Since 2™ -2 is in o,, by Artin’s produet formula we have

1< 6P, = |2“h(z(”))bh(z,m) u< 0,03 < 010, g4
3

This 'completes the proof of Theorem 3.
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