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ON CONFORMALLY SYMMETRIC RICCI-RECURRENT SPACES

BY

W. ROTER (WROCEAW)

1. Introduction. An n-dimensional Riemannian space is said to be
of recurrent curvature (briefly, a recurrent space) if its curvature tensor
satisfies the condition (see [8] and [9])

(1) Brije,y = By # 0
for some vector ¢;, where the comma indicates covariant differentiation

with respect to the metric.
Contracting (1) with ¢®* we see that, for a recurrent space,

(2) Ry, = o Ry.

Spaces whose Ricci tensor satisfies (2) for some vector ¢;, where
Ry # 0 + ¢;, are called Ricci-recurrent [3].

Thus, every recurrent space with E; # 0 is Ricci-recurrent, but
the converse, as we shall show, is, in general, not true.

According to Chaki and Gupta [2], an n-dimensional (n > 3) Rie-
mannian space is said to be conformally symmetric if its Weyl’s conformal
tensor

1
(3) Oy =Ry — p—Y (95 B™ —guRY + 4Ry — 6} Ry) +

R h h
o — &
+ (n—1)(n—2) (51:%5 jgﬂc)

satisfies _
(4) Chijk,l = O.

It follows easily from (3) and (4) that every conformally flat (n > 3)
as well as every symmetric (in the sense of E. Cartan) Riemannian
n-space (n > 3) is necessarily conformally symmetrie.

Since a general canonical form for the metric of a conformally sym-
metric space is so far unknown, an interesting question arises of the
existence of conformally symmetric spaces which are neither conformally
flat nor symmetric in the sense of E. Cartan. Spaces of such type will
be called essentially conformally symmetric.
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Adati and Miyazawa [1] investigated conformally symmetric spaces
which are simultaneously Ricci-recurrent. Their main results are the
following:

(A) In a conformally symmetric Ricci-recurrent space the recur-
rence vector ¢; is a gradient.

(B) If the Ricci tensor of a conformally symmetric space satisfies
equation (2) for some non-zero vector ¢;, then the following cases occur:

(a) the space is conformally flat and recurrent;

(b) the space is symmetric in the sense of E. Cartan and R; = 0;

(c) the scalar curvature vanishes and the recurrence vector is null.

Main aim of the present paper is a determination of a canonical form
for the metric of a conformally symmetric Ricci-recurrent space. With
help of this metric we shall also prove the existence of essentially con-
formally symmetric spaces.

2. Preliminary results. We start with a canonical form for the
curvature tensor of a conformally symmetric Ricci-recurrent space. To
that end we need several lemmas.

LeMMA 1. If ¢ and Ty, are numbers satisfying

(6) 6 Tym+6;Tym =0,

then either each e; is zero or each Ty, 18 zero.

Proof. Suppose that one of the e’s, say ¢,, is not zero. Then (5) with
t =j = q gives 2¢,T,, = 0, and, therefore, Ty, =0 for all I and m
Putting ¢ = ¢q in (5), we have ¢,T,, = 0, whence Ty, =0 for all j,.
and m,

LeMMA 2. If ¢; and Py, are numbers satisfying

(6) Pomsr = —Purumigy  26.Pinmir + € Pimir + €1 Prumgi = 0,

then either each e; is zero or each Py, is zero.

Proof. Suppose that one of the €’s, say ¢,, is not zero. Then (6) with
i =j = qgives 3¢, Pypq = 0 since Py, = 0, and, therefore, Py, = 0
for all I, h, m and k. Putting ¢+ = ¢ in the second equation of (6) and ap-
plying the first equation of (6), we have 2¢,Py,.; = 0. Hence Py, = 0
for all I,h,m,j, k. ~

It has been proved ([4], Lemma 2) that, for a Ricci-recurrent space
whose recurrence vector is a gradient, the following relations are satisfied:

(7) Rij,lm—Rij.ml = 07
(8) RriR’;lm'*'RﬂRram =0,
9) thRfj = %RRtj’

(10) E"R,, = }R".
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Moreover, since, for a general Ricci-recurrent space,
(11) ¢.R"; = 4 Rey,

(see [4], equation (13)), by Theorem (A) of Adati and Miyazawa, we have
the following corollary:

COROLLARY 1. In a conformally symmelric Ricci-recurrent space,
relations (7)-(12) are satisfied.

With help of Corollary 1 we can now give a short proof of the
following theorem ([5], Theorem 3):

THEOREM 1. The scalar curvature of a conformally symmetric Ricoi-
-recurrent space vanishes and the recurrence vector is null.

Proof. Differentiating (3) covariantly, summing over » and !, and
taking into account (4) and the well-known formulas

R'yrr = Byp—Ry,; and i = 3R,

we obtain
By — Ry ; = m (B x9y— K ;19:u),
which, in view of (2) and (12), yields
1
(13) o BRy—c; Ry, = mR(ckg{j_cjgtk)'
Transvecting now (13) with R* and using (9), (10) and (11), we have

1., 1 1 1

— _— = ——— R|— Re¢;— Re.

4Rc, 2Rc, 2(n—1) (2 ¢4 Rc,),
whence

(n—2)R%¢; = 0.

The last equation proves the first part of our theorem.
Substituting now R = 0 into (13), we obtain

(14) 01:30 = ¢; Ry,
which, in view of (11), implies
crchij = G,R',;cj = %Rcicj = O.

This equation completes the proof.
LEMMA 3. The Ricei tensor of a conformally symmetric Ricci-recurrent
8pace is of the form

(15) R, = ace;,- where a # 0,
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and satisfies the condition
‘(16) .R,‘Rrﬂm == 0.

Proof. Since ¢; # 0, we can find b’ such that "¢, = 1. Putting
E; = b"R,, and making use of (14), we have

{17) B; = Bqeyy
Which, in. VieW Of .R,j == Rj’i’ giVOS
E;, = ac;, where a =b"b°R,, # 0.

The last equation, together with (17), leads immediately to (15).
Substituting now (15) into (8), we eagily obtain

(18) cj chram + 0.‘ 0,. Rrﬂm = 0 .

Writting Ty, = ¢, R;,,, we can see that (18) is of the form (5). Hence,
in virtue of Lemma 1, there is ¢,R";, = 0, which together with (15)
yield (16). Thus the proof of our lemma is complete.

LeMMA 4. The curvature temsor of a conformally symmetric Ricci-
-recurrent space 3satisfies the condition

{19) i Bjjpnm + Ch Bjjomi + Cn By, = 0.
Proof. Dif:ferentia.ting (3) covariantly and using (4), we have
1
{20) ‘Rhijk.l = n—29 (gij-th,l—gik-th,l+ghkRij,l_gthik,l)_
B )
(n—1)(n—2) Ineis — IniGix) »

WhiCh, in VieW of (7), Yields Rhijk,lm—-RMjk,ml = 0.
By making use of the Ricci identity, this equation gives

(21) B B i+ Bppie B g + Bire By + By By, = 0.

As an immediate consequence of (20) and (2), with B = 0, we have

{22) Rh{jk.l = ¢ (gy th'“ !jthh s 62Rij - 5;' Ry),

n—2

1
{23) Rpsjey = "o (94 Bri — Ji Bry + 9 Big — 9ng B -
Differentiating now (21) covariantly and taking into account for-
mulae (22), (23) and (16), we get

(24) RByR,in— Brm By + BaBppgr — By By + By Bpir, —
— R, By + By By, — By Bpyy = 0.
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A cyclic permutation of A, ! and m gives

26) By By — By Bt + B Bipjr — Bip Bygie + By Bz —
— Ry Byiony, + By Bygp, — Byp By, = 0
and, furthermore,
(26) BBy — By Bripie + By Bnyre — B Bonpgre + Byp Bz —
— Ry R inse + Big Bnip— By Ry, = 0.
Adding (24), (25) and (26), we obtain

27)  2(BaRumgr + Bom Bigr + Bip Brngie) + By ( By — Bare) +
+ By (Bpimp — Boine) + Bng (B — Bymy) + Bra (Brijm — Brgn) +
+ By (Byjn — Brg) + Bip (Bniy — Bygm) = 0.
Since
Byne — Brae = Bypies  Buome — Bminke = Bamires
Roar— Bume = Bty Bagm — Bmign = By
Byjn— Brin = Bipgey  Bin— Rigm = By
relation (27) can be written in the form
2(Bg Bpmpi + Bom B + Bin Bggr) + By Bipize + By Bpmar, +
+ Byy Ryaire + Bra Bymji + B Bpgs + B By = 0,
which, in virtue of (15), yields

(28)  2¢;(c; RBumjic + Con Bingre + €1 Bonigie) + €5 (61 Bpgre + Con Bz, + p Bypre) +
+ € (C; Bpmjt + Cm Bipgs + €4 Bpys) = 0.
Putting
Ppimix = C1Bpmjr + Cn Bipgie + Cp By s
we see that (28) is of the form (6). Since ¢; # 0, Lemma 2 gives Py,,,;, = 0,
which completes our proof.

Now, with help of Lemma 4, we can follow step by step a proof of
Walker (see [9], p. 45, and [8], p. 1565) to show the following lemmas:

LeMMA 5. The curvature tensor of a conformally symmetric Ricci-recurrent
space i8 of the form

(29) Rynm = 0 Smi— s Smic + Cm S — Cm i Sng

Where S{j = Sj‘ = brbaRn'ja and b'c,. =1.
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THEOREM 2. Every conformally symmetric Ricci-recurrent space admits
a null parallel vector field co-directional with the recurrence vector.

Proof. Differentiating (15) covariantly, using (2) and (15) again,
we get the equation

(acir+%cia,—dacer)e;+ (acy+3¢ja,, —ager)e, =0
which is, evidently, of the form (5). Hence, in virtue of Lemma 1,
(30) ac; ,, = tac;e,—1a 0.
Since ¢;; = ¢ ;, equation (30) gives a, = b"a,c,, whence, again
by (30) and by @ # 0, we receive
(31) ¢ = Acje,,  for some 4.

Differentiating now covariantly (31) and making use of the Ricci
identity and (31), we have

(32) chrjkp = (A'pck—A’kcp)Oj.

Hence, making use of (16) and (15), and transvecting (32) by b%, we:
obtain 4 ; = dc,, d = b"A ,. Since there is a function ¢ such that ¢; = ¢,
it follows that A is a function of ¢ alone. Putting now

(33) ¢; = QB;, where @ = exp ( f Adc),

we find easily that ¢;, = AQc,B;+@B,;;, whence, because of (31)
and (33), we have @B, ; = 0. In view of Theorem 1, @’B"B, = ¢"¢c, = 0,
which completes the proof.

3. Main results. Now we proceed to main results of this paper. In
this section each Latin index runs over 1,2,...,7, and each Greek
index — over 2,3,...,n—1.

THEOREM 3. In a conformally symmetric Ricci-recurrent space, coor-
dinates can be chosen so that the melric takes the form

(34) ds? = y(d2')? + k,, do’* da* + 2 do da™,

1
v = T3] Cexp (dea:‘) k,2'2® +a,,0 x”,

where (k;,) is a symmetric and non-singular matriz consisting of constants,
(@1,) i8¢ a symmetric matriz of constants satisfying k**a,, = 0 with (k')
= (ki)"Y @(2") # 0 is a function of x* only, and C # 0 is a constant. Every
space of dimension n > 3 and with metric of the form (34) is conformally
symmetric and Ricci-recurrent.

Proof. Let be given a conformally symmetric Ricci-recurrent space.
Walker ([8], p. 176-179, and [9], p. 51-54) proved that if a Riemannian
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space with the curvature tensor of the form (29) admits a null parallel
vector field B* satisfying (33), then one can choose coordinates so that
the metric of the space can be written as

(35) ds® = p(da)? + ky, do* da* + 2da da™,

‘where k;, (k;, = k,;) are constants, |(k,,)] # 0, and ¢ is independent of z™.
In such a coordinate system the null parallel vector field is of the
form B' = ¢}, whence, in view of (33), it follows that ¢, = Qg,B*
= @g;, = @0;. The recurrence vector ¢; is now a gradient of some function
C(x'), and so @ is a function of z! only.
As one can easily verify,

(=1
(=]

(gij) = : K B
0 0
1 0...0 —p¢

and, in the metric (35), the only Christoffel symbols not identically
Zero are ‘

A\ _ Ly, qnl_L_ e} _1
11 - 2 P.o) 11 - 2‘?.17 17 - 2‘?.7’

where the dot denotes partial differentiation with respect to coordinates.
Moreover, in view of the formula

1

Bugre = E(ghk.ij + 9ij.1k — Ins.ix — Gik.ns) + Ing {Iﬁc} {:.l?} ~9pq {;1:7} L:qk}’
it follows ([8], p. 179) that the only components R, not identically zero
are those related to R,,, = ¢ .

It can be also found that R,, = $k°°¢ 4, and that all other compo-
mnents are identically zero.

Similarly, by an elementary but somewhat lengthy calculation, we
can easily show that the only components of Cpyy By 1y Brgr,y and Crgp.
not identically zero are those related to

1.1 )
Ollpl = §_<p.lu— —m__z) klu(kp (p.ﬂm)’

1 1
R,, =+ kﬁm‘P.ﬂwu Ru,z == kﬂw‘l’.pwu
2 2

1 1
-lell,l = E @.ya1y Rlyll,p = 5 P.yaus
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1
@.au1 2(n—2)

011#1. 1 klﬂ ( kfe P.8a1 )s

[~ |-

— —_—

Cum,y 9 Py — 2(n—2) kly(kpw¢.ﬂmy)'

Since our space is, by the assumption, conformally symmetric Ricci-
-recurrent, we have

(36) (K°°9.p0).0 = @ (K9 p0),

bau (679, po) -

(37) P = ——

As one can verify, (36) and (37) are satisfied if and only if

1
(38) @oap = n—_—lel,exp(dewl) +2a,,,
where ¢ # 0 and a,, (a;, = a,,) are constants such that k**a,, = 0.
Hence
1 L
(39) ¢ = mCexp(dewl) kot + ay, 0t + a3t 4 £,

%, and ¢ being functions of z! only.
Consider now a transformation ([8], p. 178) of the form

w" = a:”—k"‘a,,, w’n =$”+ szl-l-?]

from 2? 2° ...,2" to new coordinates z?, £, ..., 4™, where g;, 0, and. .
n are functions of a! satisfying
1, 1
=5 [mdst, o= [ady n=3[(E+Fge)dn

Transforming (35) and (39) and omitting the primes, we obtain (34).
for the metric of a conformally symmetric Ricei-recurrent space.

Obviously, every Riemannian n-space (n > 3) with a metric of the.
form (34) is conformally symmetric and Ricei-recurrent. The last remark.
completes the proof.

LemMA 6. A Riemannian space with metric (34) is of recurrent cur-
vature if and only f all a;, in (34) are zero.

Proof. If all a,, are zero, then (34) yields

Vg = Qa,;w.lp =CiY au

whence, in virtue of R,;,,; = 3y, and R,,,, = }y,;, we infer immedi-
ately that R,;, ; = ¢;B;,,. Hence the space is of recurrent curvature..
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Conversely, the recurrence condition (1) gives

%V’.Apj = -Rum.j = b}Rupl = %bj Yau
whence

(40) Yo = 0392,

for some non-zero vector b;. But we infer from (34) that
1 1
Voaw =5 CQé;k,,exp ( f Qdﬂ"‘l) y
which, together with (40), implies
1 1 1 1 1
(41) mCQé,kl,,exp (dew ) = me, k;,0Xp (dew ) +2b;a,,.

Transvecting now (41) with ¥** we see that b, = Qd}. The last
equation, in view of (41), yields finally b;a,, = 0, which completes the
proof of our lemma.

Theorem 3 and Lemma 6 yield

COBOLLARY 2. For each n > 3, there exist n-dimensional conformally
symmetric Ricci-recurrent spaces which are mot of recurremt curvature.

It can be easily verified that every conformally flat Ricci-recurrent.
space is of recurrent curvature. Since a Ricci-recurrent space cannot
be symmetric in the sense of E. Cartan, we have, in view of Corollary 2,

COROLLARY 3. There exist essentially comformally symmetric spaces.

Remark. As a generalization of the concept of a Ricci-recurrent
space, Roy Chowdhury [7] investigated =-dimensional Riemannian
spaces whose Ricci-tensors satisfy the relation

Ryjm =GRy # 0

for some tensor @;. Spaces of this kind are called second-order Ricci-recur-
rent or, briefly, 2-Ricci-recurrent.

The present author established [6] that every conformally symmetric
2-Ricci-recurrent space is a Rieci-recurrent space with the necessarily
vanishing scalar curvature.

Since, in view of (34),

Ty = C;j+06; = Q;6; +Q° 6;6;

is zero if and only if @ =1 [(C* 4+ ') (C* is a constant), we have (34) with
Q = 1/(C*+a") for the metric of a conformally symmetric 2-Ricei-recur-
rent space.
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