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A NOTE ON THE FERMAT EQUATION

BY

R. TIIDEMAN (LEIDEN)

We consider the Fermat equation with even exponents,
(1) x2"4+y? =z2" in integers n>1, x>0, y>0, z>0.

Without loss of generality we may assume x < y < z. Fermat proved that (1)
has no solutions with n even (see [3]). Terjanian [6] showed that (1) has no
solutions with n prime and ntxyz. Wagstaff [7] proved that there are no
solutions with n < 125000. It follows from Faltings’ celebrated solution of the
Mordell conjecture [1] that for every n equation (1) has only finitely many
primitive solutions. Stewart [5] and Inkeri and van der Poorten [2],
independently, showed by Baker’s method on linear forms in logarithms that
there are only finitely many solutions of (1) for which y—x is bounded.
Stewart gave a lower bound for y— x in terms of n and z. It follows from an
old lemma of Barlow and Abel that (1) has only a finite number of solutions
if z—y is bounded, but larger than 2. We shall prove by elementary
estimations that (1) has no solutions at all with z—y =1 or 2.

THeoOReM. If (1) holds, then z—y = 2*""!/n.
Note that Wagstaff’'s bound now implies that

z—y > 2249999/125000 > 1075000.

The proof of the Theorem depends on the following lemma of Barlow
and Abel.

LemMA 1. Suppose m, x, y, z are positive integers with x <y <z and
(x.v.2z) =1 such that

xm+ym — zm.
Then
(a) there exist 6 0. 1) and positive integers a,. d, with d,|m such that

z—y =2%d;!a}.

(b) Suppose m is odd. Then there exist positive integers a,, d, with d,m
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such that
x+y=d;'a}
The proof is well known (see [4], Chapter 11).
The next lemma shows that y is large compared to n.
Lemma 2. If (1) holds, then y* > 2"/(2n) and y > 10n2.
Proof. By Fermat’s result, n is odd. By Lemma 1 (b), there exists
integers a and d with d|n such that x2+y?>=d 'a". Hence a>1 and

v2 > a"/(2n) = 2"/(2n). By Wagstaff's result, we have n > 100. (Of course,
much older results suffice.) Thus

y = (2/2n)""? = 10n2,

Proof of the Theorem. Suppose that (1) holds. Without loss of
generality we may assume (x, y) =1, x <y <z and n odd. We distinguish
between three cases.

Case 1. Assume z—y = 1. Then z odd, y even, x odd. By writing (x")?
+(y? = (z"? we ‘see that there exist positive integers r, s with r >'s > 0,
(r,s) =1, and rs even such that

2

2 x"=r2—s% y"=2rs, z"=r?+s%
Since r?+s2=z"=(y+1)", by Lemma 2 we have

(3) yn+nyn—l <r2+s2=y"+(;,)y"'l+(;)y"‘2+...

n n\2
<y"+ny"‘l(1+5+ 2_y +...><y"+2ny"“l.

Furthermore, by Lemma 2,

(FF—s?)? = x2" = (yp+4 1)2"— y?" = (zln)yz"'l+(22n)y2"—2+...

n n?
< 2ny?-! (l +;+?+...) < 3nyt,

Hence
@) 2y <rt—52 < [3ny"m 12,
Combining (3) and (4), by Lemma 2 we obtain

y"<2rt < y"'+2\/;>y"“’2'
and
y"—2\/;1y"' Y2 <252 < y".
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This implies

) \—;_—iy"lz <r< %ynﬂ_,_\/;yn/z-l/z,

and, by Lemma 2,

(6) Lyn/2 _ \/;ynlz— 12 o g < %zyn/z.

NG

Observe that (r+s,r—s) =1 and (r+s)(r—s) = x" imply that r+s = x| for
some positive integer x,. Furthermore, either r even, s odd or r odd, s even.
In the first instance, (2r, s) = 1, 2rs = y", whence 2r = yj for some y,e Z; in
the second one, (r, 2s) =1, 2rs = y", whence 2s = y3 for some y;eZ. We
have, by (5) and (6),

7) IxT—y3| < max(r4+s—2r, [r+s—2s)) =r—s <2./ny”>" V2,
On the other hand, by (6),
min(x}, y3) = 2s > J2y"2 -2 /ny"?i 12,
Hence, by Lemma 2,
min (x}, y3) > y2+ (/2 D) yH2 =2 /n) y2 712 > y2,
Thus min(x,, y;) > \/} Since x; # y,, this implies
Xt —y31 = (Y + "= (/) >y V2

Since n > 4, this yields a contradiction to (7).

Case 2. Assume z—y = 2. Then x even and y odd. Hence there exist
positive integers r, s with r > s> 0, (r, s) = 1, rs even such that

(8) x"=2rs, y'=r*—s% z"=ri+s%

Since (r, s) =1 and r?—s? is odd, there exist positive integers y,, y, such
that
9) r—s=yi, r+s=y;.
We have, by Lemma 2,
22 =2"—y"=(y+2)"—)"

n-12 (n—1)(n-2) 4
ot y_2+...)

=2ny""! (1+

n n?
< 2ny"! (1+;+?+...) <4ny"-1,
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This implies s < 2n'/2y"~ 12 Further, by (9) and (8), y, >r!/"> y'/2
Hence, by (9).

yg_yrll — 28 < 4n1/2 y(n— 1)/2 S 4nl/2 yg—l.
On the other hand, y, > y,, and therefore, by Lemma 2,

o 1\ s (M) -
Vi=yi =2 Vi—(y2—1)" = nyj ‘—(2>yz 2+(3)}'z o

>nn-1(1_i_(i S TR
= 2, \2y,) T )7 2"

Combining these inequalities we obtain {n < 4n'/2, which is impossible.

Case 3. Assume z—y > 2. According to Lemma 1 (a), there exist
integers &, a, d with € |0, 1} and d|2n such that z—y = 2°d~'a*". Hence
a>1 and z—y = 22"(2n).

Remark 1. An improvement of the estimate in Theorem 1, at least for

large n, is possible by using van der Poorten’s p-adic analogue of Baker’s
method (see [2]).

Remark 2. The proof that
(10) x"+y"=2z" inintegers n>1, x>0, y>0,z>0

has no solutions with n prime and z—y =1 would settle Abel’s conjecture
that (10) has no solutions such that one among x", y", z" is a prime power
(see [3], Chapter 1V).
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