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ABSOLUTE FIXED-POINT SETS IN COMPACTA
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1. Introduction. A subset A of a topological space X is said to be
a fized-point set of X if there is a map f: X — X such that f(x) = = iff
z € A. In [2] the author defines a space X to be an absolute fized-point set
relative to a class @ of topological spaces if X € Q and whenever X is em-
bedded as a closed subset of a Q-space Z, then X is a fixed-point set of Z.
It is shown in [2] that, for many classes ¢, the class of absolute fixed-
point sets relative to @ contains the class of absolute retracts relative to @
and lies in the class of connected, locally connected Q-spaces.

In this paper* we study the concept of an absolute fixed-point set
for the class @ of compact metric spaces. In particular, it is shown that
a finite-dimensional compactum X is an absolute retract iff it is an abso-
lute fixed-point set and an absolute neighborhood retract. If, in addition, X
is planar or 1-dimensional, then X is an absolute retract iff X is an absolute
fixed-point set. We give an example of a contractible compactum X which
is locally n-connected for all n = 0,1, 2, ..., and which is not an absolute
fixed-point set.

2. Absolute fixed-point sets. We shall confine our attention to compact
metric spaces and we shall adopt the notation used in [1]. In particular,
we shall let AR (ANR) denote the class of absolute retracts (absolute
neighborhood retracts) relative to the class of compact metric spaces.

Definition. A compactum X is an absolute fized-point set (or an
AFS-space) if whenever X is embedded as a subset of a compactum Z,
then X is a fixed-point set of Z.

The results of [2] yield the following theorem:

THEOREM 1. Every AFS-space is a Peano continuum.

We shall find the following concept useful in the sequel. Let C be
a compact subset of a Hilbert space E” and let A be a compact segment
in E® which is disjoint from C.

* The research of this article was supported in part by the National Research
Council of Canada (Grant AS8205).
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Consider the disjoint union Au(Cx[0,1)) of A and the product
space C x[0,1). Let h be a one-to-one mapping from AuU(C x [0, 1))
onto a continuum in E” such that the following properties are satisfied:

(i) h(z) =z if z € A.

(ii) A(2,0) =z for all z€C.

(iii) A|C x [0, 1) is a homeomorphism.

(iv) For each z € C, h({z} X [0, 1))UA is homeomorphic to the closure
of the curve in the plane E* whose equation is ¥ = sinn/z for 0 < z < 1.

The image of AU(C x [0, 1)) under h is said to be the cap CA
of O and A. To facilitate notation, we shall view the cap CA as the set
Av|C x [0, 1)) together with an assigned topology which makes the
function A an isometry.

ProroSITION 1. If X 48 a locally m-connected AFS-space, then X 13
n-connected.

Proof. From Theorem 1 it follows that every AFS-space is 0-connect-
ed. Hence suppose that n is some positive integer, and X is a locally
n-connected AFS-space which is not n-connected. Then there is a map g
from the n-dimensional sphere 8" into X such that g is not homotopic
to a constant map. Let Y denote the cap of ¢g(8") and a segment A. Form
the compact metric space Z by taking the disjoint union of X and Y,
and then identifying the set g(8") in X with the set g(8") x {0} in Y.
Since X is an AFS-space, there is a map f: Z — Z whose fixed-point set
is precisely X. ’

If f(A)nA # 0O, then f(A) < A and, consequently, f has a fixed
point in 4. Thus we must have f(¥Y) « Z— A, and hence f(Z) < Z— A.
Since ¢g(8™) x {0} is a retract of Y — A, there is a retraction r: Z > X
mapping Z onto X.

Let p € A and let U be a neighborhood of r(p) in X. Since X is locally
n-connected, there is a neighborhood V of r(p) contained in U such that
every map ¢: 8" —» ¥V is homotopic to a constant map in US". Let W
be a neighborhood of p in Z such that (W) < V. Then, for some ¢, in
(0, 1),

g8 ) x {t} = W.

Hence the map y: 8" — V, defined by y(2) = r(g(2), t,) for all z € 8",
is homotopic to a constant map. This is a contradiction since the maps
v, g: 8" — X clearly belong to the same homotopy class.

Suppose that X is an AFS-space and C is an n-dimensional sphere
which is a retract of X. Using the notation from the proof of Proposition 1,
we let g: 8" - X be an embedding mapping 8" onto C. Then we obtain
a retraction r: ¥ — C x {0} mapping the cap Y onto O x {0}. As in the



ABSOLUTE FIXED-POINT SETS 43

proof of Proposition 1, we obtain a contradiction. Consequently, we obtain
the following theorem:

THEOREM 2. An AFS-space cannot contain an n-dimensional sphere
as a retract.

CoROLLARY 1. The 1-dimensional AFS-spaces coincide with the 1-di-
mensional AR-spaces. -

CoROLLARY 2. If X i8 planar, then X i3 an AR-space iff X is an AFS-
space.

Proof of Corollary 1. Let X be a 1-dimensional AFS-space. By
Theorems 1 and 2, X is a 1-dimensional locally connected continuum
which does not contain a simple closed curve as a retract. It follows that X
contains no simple closed curves and is therefore a dendrite. Since the
1-dimensional AR-spaces coincide with the dendrites (see [1], p. 138),
Corollary 1 follows.

Proof of Corollary 2. Let X be a subset of the plane E? which is
an AFS-space. By Theorems 1 and 2, X is a locally connected planar con-
tinuum which does not contain a simple closed curve as a retract. It follows
that X cannot separate E°. Therefore, X is an AR-space (see [1], p. 132),
and Corollary 2 follows.

THEOREM 3. A finite-dimensional compactum X is an AR-space iff X
18 an AFS-space and X is an ANER-space.

Proof. Suppose that X is a finite-dimensional compactum which
is an AFS-space and an ANR-space. Then X is a locally contractible finite-
dimensional AFS-space and, by Proposition 1, it follows that X must
be contractible, and hence an AR-space [1]. Since every AR-space is
both an AFS-space and an ANR-space, Theorem 3 follows.

Example. Let a, (k = 1, 2, ...) denote the point in a Hilbert space E®
given by the formula

( 2k+1
k =

m’ 0’0,0’ .oo)’

and let a, denote the origin of E“. Let S; denote the n-dimensional sphere
in E® consisting of all points # = (x;) such that

1

d(z, @) = m

and such that z; = 0 for ¢ > n+1. It is well known (see [1], p. 31) that
the set

Y = {a}u U 8K
k=1
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is LC*. Hence, if X denotes the cone over Y with vertex p, then X is
a contractible compactum which is LC*. We now show that X is not an
AFS-space by constructing a compactum Z containing X such that X
18 not a fixed-point set of Z.

Let A, (k =1,2,...) denote the segment in E“ with endpoints

1 1 1 1
0,0,0,... _ ——y 0,0,0,...].
(k+1 ) k(k+1) y U, 0,0, ) and (k’ k(k+1) y U, 0,0, )

Let C} denote a cap for 8 and A, such that diameter

2
k(k+1)

Form the compact metric space Z obtained by taking the disjoint

union Xu | C¥ and then identifying each 8% in ¥ with 8% x {0} in Cf
k=1
(k=1,2,...).

Suppose that f: Z - Z is a mapping whose fixed-point set is pre-
cisely X. Let V be a neighborhood of a, such that f(V) < Z — {p}. Since V
contains infinitely many of the sets of the form C%, there is an integer j
such that f(C}) ¢ Z— {p}. Since no point of 4; remains fixed under f,
we have f(C)) = Z— A;. Consequently, since 8] x {0} = §] is a retract of
Z —(A;U{p}), there is a retraction mapping €] onto §)x {0}. Then,
a8 in the proof of Proposition 1, we obtain a contradiction. -

A similar argument can be used to show that if X denotes the cone

diamCy; <

over the set {a,}u |J 8%, then X is a contractible (n 4 1)-dimensional
k=1

compactum which is LC""! but which is not an AFS-space.

Remark. The statements found in Proposition 1 and Theorems 2
and 3 also hold for the class @ of metric or separable metric spaces.
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