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1. Introduction. Let m and n be positive integers with m > 1. The
sum f(m,n) given by

m-1

f(m,n) = Z | sin(ran/m)|

£ sin(ra/m)

arises frequently in bounding certain exponential sums.

Estimates for f(m,n) have been used in the study of the number of
quadratic residues to a given prime modulus, p, on a given interval of integers
(see Vinogradov [8]). The sum f(m,n) also appears in the proof of the
Pélya—Vinogradov inequality concerning the sum of characters, as can be
seen for example in Apostol [1]. Expressions of the same kind are used in
bounding exponential sums over primes (see Vaughan [7]).

Vinogradov proved in (8] that if m > 60 then

f(m,n) < mlogm —m.

Niederreiter 5] improved that result to get the following bound:
f(m,n) < %mlogm + %m-l- n.
Finally, Cochrane [2] obtained the more precise estimate that follows:

2
A)  f(m,n)< %mlogm + 0.38m + 0.116:i—n- + O(1),

“ 4 4 T
-1 - — [(y—=log=
B) m ,,E._.l f(m,n) = W2mlogm+ = ('y log 2) m+0(log m loglog m)

where d = (m, n) and 4 stands for the Euler constant.

2. Statement of the results. From result B in Cochrane’s paper it
follows that the constant in the main term of result A is best possible, and
the constant for the second term has to be greater than or equal to the
corresponding constant in B, which is 0.05 approximately.
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In this paper we improve the constant of the second term in A, the term
in m, and we give an interpretation for the term O(log mloglogm) in part
B of Cochrane’s result. We will prove the following result:

THEOREM 1. (a) Let m and n be positive integers with m > 1. Then

4 4 T
f(m,n) < leogm+ = (7 - log Z) m+ O(1).

(b) The average of f(m,n) over n satisfies
- 4 4 x
-1 _4 4 T
m nél f(m,n) = 1r2mlogm+ = (7 — log 2) + ¢(m)

where the last term satisfies for a positive C
—C(logmloglogm) < ¢(m) < C(logm).

Part (a) represents an improvement on part A of Cochrane’s result, be-
cause the bound given there for the second term is

d2
0.38m + 0.116—
m

while the corresponding term in Theorem 1 is

4 log ¥
7 (1-log ) m
which is approximately 0.332m.

On the other hand, the proof ¢ontains an expression for f(m,n) which
will allow us to give a further improvement to 0.27m.

Part (b) of Theorem 1 is the same as part B of Cochrane’s result but
giving a more precise meaning of the last term arising there. In fact, it is
proved that the term log m loglogm can appear only in a negative way and
it comes from those m whose sum of divisors is “large”, which by the average
behaviour of the function -, d are relatively rare (see Hardy-Wright [4]).

In the following sections we prove some auxiliary lemmas, demonstrate
Theorem 1 and indicate the ideas leading to the further improvement men-
tioned above. Finally, we calculate, as a consequence of a certain expression
arising in the proof, the sums of some series involving cotangents and other
trigonometric functions that seem to be new, at least they do not appear
in the standard references such as Gradshteyn-Ryzhik [3] and Prudnikov-
Brychkov—Marichev [6].

One of those series is given in

THEOREM 2. Let m be an integer with m > 1. Then

(o o)
1 cot (2k - 1)r _T
2k -1 2m 4

(m-1).
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Incidentally, by taking m = 2, the preceding series gives the classical
alternate series summing 7 /4, and by letting m tend to infinity, the value
of ((2) can be found.

3. Auxiliary lemmas. Statement and proofs.

LEMMA 1. Let m and n be positive integers with m > 1. Then f(m,n)
can be ezxpressed as

8 o0
f(m’n) - —~ 4k? — IS(m,n,k)
where
kn
_ (2h - D)
S(m,n, k) = Z kn cot o

h=1
LEMMA 2. For each m,n as before

fm,m) < =8 (m, [ 2] 1)
where [n] means integer part.

LEMMA 3. Let m be a positive integer. Then

5 (m [2].1) = 1272 (1 1o T) s 00

LEMMA 4. Let m be a positive integer. Then

m-—1
2 sin(7r1a/m) = 2 (togm + 7~ log 3) +00).
a=1 .
LEMMA 5.
) f(m,n)
n=1
8 oo m -1 1
- ;Z:: Z sin(ra/m) 2 Z s1n(7ra/m)

kam

Proof of Lemma 1. By using the Fourier expansion

oo

_8 1 2
|sinz| = Z o sm (kz)
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it is seen that

i 1 8 w— sin?(kran/m
f(m, ) = Z sin(ra/m) {;Z 4(k27r—1/ )}

a=1 k=1

8w 1
= = E S(m,n,k)
et 4k2 — 1

where
m-—1

S(m,n, k) = Z

a=1

sin’(kran)
sin(ra/m)

Taking into account that

. 2
sin“(rz . . .
_—() =sinz +sin3z + ...+ sin(2r - 1)z,
sin z
n
) cos 3 — cos(n + -;—):z:
E sin sz = — ,
2sin ST
s=1 2

and interchanging the summation order we finally obtain
kn
2h - )7
yn,k) = tg___—__W
S(m,n,k) hz;l co o

which proves Lemma 1.

Proof of Lemma 2. Lemma 2 is a consequence of Lemma 1 and the
fact that

Zcot(—z%——l)—”=0
h=1 m

so for each k&
r(k)

S(m,n, k) = Z

h=1
where 7(k) is the residue of kn mod m. On the other hand, cotz > 0 for
z € (0,7/2) and cotz < 0 for z € (7/2,7), so we have

S(m,n,k) < S(m,[m/2),1).
Using this and the fact that

cot (2h - )7
2m

i 1 1
— =
e ak?—1" 2

we deduce Lemma 2.
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Proof of Lemma 3. Substituting z, = (2r —'1)7/(2m) in the well
known identity

1 1
C°”=;"2m,§m

we obtain
m (21' — 1)1r
5(m 3] ) = S s
where
[m/2] (m/2] o o — 1
er—1 Sz:;’;@mh)?-(%—l)r

The sum Sy can be estimated by

_1 log2
S1 logm+2+ +O(m)

using the identity }";-, 1/k = logm + v + O(1/m) where v is the Euler
constant.

The sum S3 can be handled by changing the summation order and esti-
mating the inner sum by a convenient Riemann sum, which gives

— [1 4h? 1
ngz{ 10g4h2 +O(W)}

h=1

2
hm logH 4’;’1 1 (l) :

and using the Wallis formula:

1. = 1
Sp = ZIOg§+O(H) .

Finally by adding, we have
m _2m (1 v . log2 4dm (1. w
(o [5].) 2 (em 1+22) 42 (Bus) o

_mlogm m

- + 2 (v-10g 7)+oq).

T

Proof of Lemma 4. The proof of Lemma 4 is similar to the proof
of Lemma 3 using the simple fraction expansion of (sin z)~! instead of that
of cot z.
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Proof of Lemma 5. We make use of the formula we got in Lemma 1
for f(m,n), and adding from n = 1 to m we have

s1n2(k7ran/m)
Z f(m,n) = Z 4k2 -1 z Z sin(ra/m)

8 (o o]
T kZ: -1 az___; sin(1ra/m) +Sk(a,m)

where
m-—1 m-—1
kran 1 1 2kran
— 2 — - -
Sk(a,m) = n§=1 sin = ;:1 (2 5C )

Using the fact that

Z 2kman _ [0 if ka # m,
CO . .
—~ m if ka = m,

we obtain Lemma 5.

4. Proof of the theorem. (a) From Lemmas 1-3 we obtain

f(m,n)<%(mlogm+1:( ~ log ))+0(1)

™

which is part (a) of the theorem; this already gives an improvement on
Cochrane’s result, but we will mention later on how one can obtain a further
improvement.

(b) Using Lemmas 4 and 5 we have

> o]

Zf(m n) = §21-2—m(logm+'7--log )Z

k=1

00 m-—1
8
T ;1 42 -12 Z s1n(1ra/m) +0(m)
- ka-.m

4 4
= ﬁ"ﬂ logm + —m ( — log ) + O(m)

_4m
z 4k2 -1 Z sm(1ra/m)

ka-m

Observe that the last term is negative. Now for each k such that (k,m) =
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d > 1 we have
m—-1 1 d-1 1 [4/2]

1
L S N U S — < .
; sin(ra/m) ;_1 sin(r\/d) 2 g_;l sin(rA/d) = cdlogd
ka=m

We have to consider those k’s such that (k,m) = d > 1, but this set is
included in the set of those k’s which are multiples of d, so the error for the
k’s such that (k,m) = d is bounded in absolute value by

cmz 1 dlogd:cmdlogdi——}— <c'md—log—d
2o k7 1 Zoamp -1~ " @

and we will have a bound of the total error if we consider all possible d’s
which are divisors of m, so we have

c'mz dl;zgd < c’mlogmz % :
dlm dlm

But
1 1 c
—_— = —_— < _—
2 7= dzl d< mloglogm ,

which proves part (b) of the theorem.

5. An improvement of the theorem. If we observe that the residues
of knmod m cannot be very near to m/2 simultaneously for “small” k’s, and
if we use the expression of Lemma 1 for f(m,n), we can improve the result
of part (a) of Theorem 1.

In fact, after some calculations, we can write the identity

4 4 T
f(m,n) = leogm + 5m (7 — log —)

4
8 w— 1
DBt

. (2kn - )x
sin ~———
2m
which is valid on certain conditions upon the relative size of n, and observing
that the series is negative we can prove

+ lower order terms,

' 4
f(m,n) < leogm + 0.27m + O(1)
by minimizing the series.
6. Some consequences. Some of the applications of f(m,n) were

indicated in the introduction. Here we want to mention another one. If we
use the expression obtained in Lemma 1, we can prove the following
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THEOREM 2. Let m be a positive integer. Then

= 1 (2k-O1 7
’;2k—lc°t -4(m 1).

2m

Proof. By taking » = 1 in Lemma 1 we have

) k h—1

h=1
and writing

1 1 1 1
4k2 -1 2\2k-1 2k+1
it is not difficult to justify that

41X 1 1 . (@h-1)r
F;(zk-l'zkﬂ)(zmt om

h=1
4~ 1 (2k - Dr
= — t .
wkZIZk—lco 2m

Some other sums of the same kind can be calculated using certain trigo-
nometric identities and the preceding result, for example we can prove:

m-—1

=1 2k-1)r =
(a) ;2&:— T tan o = for any m € N,
o

4

1 1 T

(b) Z2k-—1 . (2k=1Dr 4

k=1 sin ————
2m

Let us mention, finally, that the result of Theorem 2 gives, for m = 2,

the classical alternate series for /4, and by taking m tending to infinity

gives the value of ((2). Most of the expansions used in this paper can be
found in Zygmund [9].

m for any m € N.
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