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It is well known that a connection on a vector bundle (%, p, B) can
be defined as a splitting of the exact sequence

(1) 0->EQT*(B)—>J'E—~>E-—0.

Since the r-th non-holonomic prolongation J"E of E is also a vector

bundle, it is natural to introduce a connection on J'E as a splitting of the
exact sequence

(2) 0>J"EQT*(B) > J™*E > J'E—0.

However, accepting this point of view, we neglect entirely the fact
that J™E is a special vector bundle constructed by means of the successive
jet prolongations of K. Let @ (FE) be the groupoid of all linear isomorphisms
between the fibres of K. Then, by the general theory of prolonga,tions
of fibre bundles, [1], the r-th non-holonomic prolongation (D’(E) of ®(E)
is a groupoid of operators on J" E. Since cb’(E) 1s evidently a proper sub-
groupoid of the groupoid (D(J’E) of all linear isomorphisms between the
fibres of j’E, there appears a natural question: under what conditions
a connection on <1>(:] "E) given by an arbitrary splitting of (2) can be reduced
to (i)’(E)? In the present paper, we solve this problem for r = 1 and
r = 2, but we hope that one meets all essential features of the general
problem already in the case » = 2 and we feel inconvenient to treat

directly the general case because of a great number of different conditions
which should appear there. After that, we investigate the reducibility

of a connection on @*(E) to some natural subgroupoids of <1~>2(E). We
should like to underline the remarkable role played in our considerations
by the so-called lateral projections of non-holonomic jets introduced
recently in [6]. The standard terminology and notations of the theory of
jets are used throughout the paper. In addition, j means the usual projec-
tion of r-jets into s-jets, s < r. Our considerations are in the category C®.



246 I. KOLAR

1. Let (E, p, B) be a vector bundle over B of fibre dimension m and
let » = dim B. Further, let @ (F) be the groupoid of all linear isomorphisms
between the fibres of ¥ and let a: @(F) — B or b: @®(F)— B be its source
or target projection, respectively (i.e., if 0e¢ @ is a linear isomorphism of
E, into E,, then a(0) = x, b(0) = t). Obviously, ®(F) is a Lie groupoid
over B [8]. A connection on E can be equivalently defined either as a eross-
section C: B — Q'(® (E)), where Q'(® (E)) means the fibre bundle of all
elements of connection of the first order on @ (E), [2], or as a splitting
y: E — J'E of the exact sequence (1), see [8]. If a connection C is given,
then the value of the corresponding splitting » on a vector ve E, is deter-
mined as follows. If C'(z) = j, o(t), where g is a mapping of a neighbourhood
U of z¢ B into @(E) such that a(e(t)) = =, b(e(t)) =1, ¢(#) = idy_, te U,
then t — o(t)(v) is a local cross-section of F over U. By [8], y(v) is the
1-jet of o(t)(v) at z, i.e.

(3) y(v) = jilo(®)(v)].

In what follows we systematically denote a cross-section of Q' (®(E))
by a capital Roman letter and we shall use the corresponding lower-case
Greek letter for the associated splitting E — J' E.

We use frequently the evaluations in some local coordinates. For
the sake of simplicity, we assume in such a situation that E is a trivial
vector bundle R" x R™ over R = B and that
i w U]y ... =1,...,m,

Y,
afy... =1,...,m,

are the natural coordinates on R" x R™. Then & (R" x R™) = R"* x L,, x R".
This induces the coordinates

', by, &,
det |bj| # 0, on @(R" x R™). We have a(z/, b}, 2°) = (2°), b(Z, b3, 2°) = (T)
and the action of @(R" x R™) on R™ x R™ is given by
(4) (@, b3, &) (', y") = (&, b3y").
On J'(R" x R™) there are further coordinates y; determined by
Yi(jz0) = 0;y°(o(2)),
provided 0; denotes the partial differentiation with respect to a‘. Thus,
if C(x) = j (), b5(t), ), bj(x) = &5, then
(3) (@' y°) = (', y°, Ti(@)y?),

where Ig;(x) = 0;bg(x). The functions I are called the Christoffel’s
symbols of C. In short, we say that the splitting (5) is given by

a

(6) Yi = ﬁiyﬂ'
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2. Consider the tensor product F,® E, of two vector bundles over B.
Let C, be a connection on E,, a = 1, 2. Then C, and C, determine a con-
nection C,®C, on E,R® E, in the following well known manner. If C,(x)
= jlo,(t), then p,(t)®0,(t)e P(E,Q E,) and we write

(C,®0,)(x) —]z(ol ) ® o2 (1 ))
In coordinates, if

- yi = I's;4’, m — the fibre dimension of E,
yi = 'y,  Auy... =m+1,..., m+ the fibre dimension of E,,
are the corresponding splittings, I'5;(x) = 0,b3(x), I‘,f,( ) = 0;b}(x), then
the Christoffel’s symbols of C,®C, satisfy I (z) = 0;(b3dl)(x). This
implies

(8) e, =I3,84+ 817,

Bui —

A connection C on E,Q E, will be said to be decomposable if there
exist connections C, and C, such that C = C,®C,. The decomposability
of C is characterized by linear equations (8) with unknown I7%,, l‘ﬁ,-. Since
the general solution of the homogeneous system depends on one parameter,
the factors C, and C, of a decomposable connection are not uniquely
determined. We shall further say that a connection C on E,® E, is decom-
posable with respect to a connection C, on E,, if there exists a connection
C, on E, such that C = C,®C,. By (8), we obtain

LeMmA 1. If a connection C on E,RQ E, is decomposable with respect
to a connection C, on E,, then the second factor C, on B, is uniquely determined.

3. We shall state an algebraic lemma generalizing Lemma 2 of [7].
* Consider a commutative diagram with exact rows and columns of vector
bundles over the same base and of their base-preserving homomorphisms:

0 0 0

v y v

0— A;—>B,—>C,—0

3! Dy
SR
(9) 0—>A2_;_>Bz )Cz’—>0
") w) e
v2 3
0~—>Aq——>B3———)C3—‘>O
bRl
0 0 0
Let y: Cy; — B, be a splitting in the middle row. By exactness, the
values of the composition w(y) = y,y{, lie in A, c B,. Hence w(y) is
an element of Hom(C,, 4,), which will be said to be the obstruction asso-
ciated with y.



248 “I. KOLAR

LEMMA 2. A necessary and sufficient condition for the existence of
a splitting yo,: C3 — B; or y°: Oy — B, compatible with diagram (9) is w(y)
= 0e¢ Hom(C,, A,).

Proof. Necessity is obvious. Let w(y) = 0. If x4 {,(C,)e (3, then
we define yy(x+,(Cy)) = vy (x). Since y,yl,(C,) = 0, this definition
is correct. Further, we have

pa?’o(w‘|‘ 51(01)) = Pa'/fz)’(x) = Lepey(2) = x4 £1(Cy),
so that y, is a splitting. Moreover, if ye(C,, then w(y) = 0 implies
y(1(y) eIm(yp,). Hence there is a unique »°(y)e B, with y,v%(y) = v ().
Then
E101Y°(Y) = P21 v°(y) = P27l (y) = L1(Y)-

4. The first prolongation J' E of E is a vector bundle of fibre dimension
N =m(n+1). Let &(J'E) be the groupoid of all linear isomorphisms
between the fibres of J'E. In the trivial case,

@(J'(R" x R™)) = R" x Ly x R

Taking into account that J 'E is the prolongation of E, we shall
say that an element 6¢ @(J'E) with source x and target ¢ is projectable,
if there exists an element ge @(F) such that the diagram

(10) LT

commutes.
Denote by @,(J'E) the subgroupoid of all projectable elements of
@ (J'E). If the coordinate expression of 6 is

(@, ¥, i) — (F, 5y° + iyl oy’ + ),
then

(11) 0c @,(J'E) if and only if ¢ = 0.

In general, if a Lie groupoid ¥ is a subgroupoid of a Lie groupoid
@ over the same base B, then a connection C: B — Q'(®) is said to be
reducible to ¥ it C(B) < Q'(¥). We shall first investigate the reducibility

of a connection y: J'E - J°E to ®,(J'E).

We recall that beside the usual projection ji: J*E — J'E there is
another canonical projection I': J*E — J'E defined by L(jlo) = jL(i0);
this projection is said to be lateral, [6]. On j2(R" x R™) there are further
coordinates ¥g;, ¥;; given by

Yoi (jz0) = aiy"(a(m)), ?/?j(ja]na) = aj?/?(a(x))-
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According to [6], if 2%, ¥°, 42, ¥, y;; are the coordinates of an element
Y e J*(R" x R™), then

(12) ];(Y) = (‘vi’ Y Y5, l;(Y) = (mi7 Y%y Yoi) -

PROPOSITION 1. A connection y: J'E — J*E is reducible to D, (J'E)
if and only if there exists a connection yo: E — J' E compatible with the diagram

0 0 0
' | |

0—-E®(®T*(B)—>JY(EQT*(B))~>ER®T*(B)—(

! o,

(13) 0> JNERT*(B) ———> JEE<——<J1E—0
.1
l [+ 4 b
0
0—-E®T*(B)——>JIE*=——"—"-TF—>0
y Y iy y

0 0 0

Proof. In general, the coordinate form of y is

(14) Yoi: = Thosy” + Tiniys,
vi; = Tayy’ + ik

The obstruction w(y)e Hom(E®T*(B), EQ T*(B)) vanishes if and

only if Fg{;i = 0. Comparing with (11), we obtain our assertion.

The connection C, can be described geometrically in the following
simple way. The mapping n: ®,(J'E) > ®(E), 6 — ¢ is a functor. In
general, if @ and ¥ are two Lie groupoids over B and if i: @ - ¥ is a base-
-preserving functor, then every connection C: B — Q'(®) is transformed
into a connection 2,(C): B — Q'(¥). In particular, in the situation of
Proposition 1, we have C, = z,(C).

5. By the general theory of prolongations of fibre bundles, if @ is
a groupoid of operators on a fibred manifold (8, q, B), then the first
prolongation @' of @ is a groupoid of operators on J' 8, [1]. In particular,
the first prolongation @'(E) of ®(E) is a groupoid of operators on J'E.
Obviously, ®'(E) = @,(J'E). In the trivial case,

@' (R" x R™) = R x T (LL) X L. x R",
where T, (L,,) x L, means the semi-direct product of 7)(L}) and L, with

respect to the action (8, A) — S84 of L. on Ti(L,,), Se¢T,(L,,), AeL,.
(In the other words, the multiplication in T, (L;,)x L, is given by
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(81, 4,)(Ss, As) = ((8;4,)+8s, A, A,), where the dot denotes the multi-
plication in T} (L,,).) We shall study the reducibility of connection (14) to
@' (E). On @'(R" x R™) there are coordinates
Ej7 bZ, ;17 a]; .’1},

det |aj| # 0, and the action of @!(R" x R™) on J*(R" x R™) is given by
(15) (Ejy bg, bgis a’}a wi)(wi, Y Yi) = (x’ bﬁ7/ s (bgy ﬂ‘{"bﬂ% A{')y
provided a} A} = ¢ (cf. [4]).

Let C be a connection on ®!(FE),

C((E) = j:lz(tjy b;(t)’ tflh'(t)a a/;"(t)y wi)-

Using (15) and bj(z) = 63, b3 (w) = 0, ai(z) = 6}, one finds easily

that the corresponding splitting J'E — J*E is
Yoir = ]151?/}3,

(16) o _ e g K
vi; = Ty’ + Tiyf — T vk,

where
(17)  Tg(@) = 0;b(x), Thy(@) = 0;b5:(%),  Ix(@) = 0,aj(2).
Consider now an arbitrary connection (14) on J' E. If (14) is reducible
to @,(J'E), then there is a splitting »°: EQT*(B)->J'(EQT*(B)
in the top row of (13) compatible with the diagram. By (16), if the connec-
tion (14) is further reducible to ®'(E), then (° is decomposable with
respect to Cy, i. e., there is a linear connection L on B such that C* = C,QL.
One sees easily that this condition is also sufficient. Hence we obtain

ProrosIiTioN 2. A connection vy: J'E— J*E is reducible to d'(E)
if and only if there exists a connection yo: E — J'E compatible with diagram
(13) and the induced commection C° on E®T*(B) is decomposable to C,.

6. We shall now discuss the similar problem for r = 2. Since the
lateral projections play a fundamental role even in this case, we shall
first give a survey of some of their propertles Accordmg to [6] there are

three canonical projections j2, 2, %2 of J°E into J?E. We shall state the
coordinate form of these projections. On J3(R" x B™) there are further
coordinates Ygo;, Yiojr Yoij» Yijx given by
y(‘,’m(jio) = ai?/a(g(w))’ ?/?oj(j;,-") = jyg(o'(iv))’
ygij(j:]r:a) = aj’!lgi(d(af’)), y?jk(jalra) = 6ky?j(0(93))-
If o, 4° Y%, Yoir Yo Youis Yioi» Yoiis Yie aTe the coordinates of an
element Ye¢J*(R" x R™), then
33(Y) = (@' ¥° 9%, Yoir ¥5),
(19) li( Y) = (wi7 Y% Y3y Yoois Yioj) s .
B(Y) = (mi7 Y% Yois Yoois Yoij) -

(18)
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7. Considering an arbitrary splitting y: J2E — J°E of the form
Yoor = T300i¥” + Tgnoi ¥ + Thoni¥a; + Thves Yo
Yioi = Thios¥” + Tatoiye -+ o Yo + Dot Y
(20) Yoij = Ig oui'/ + F B0ij @/k + Fsgfj?/gk + Fgcl)ciljykh
Yo = oy’ + F;ijkyl + Fu?;kyol"" Imjkylm7

we investigate a connection on (D(f2 E). By [1], the second mon-holonomic
prolongation @*(E) of @(E) is a groupoid of operators on J*E satistying
&*(E) ¢ ®(J*E). We study the reducibility of the connection (20) to

EDZ(E). (Similarly to Proposition 1, some of the following conditions can
be explained even separately. Nevertheless, we shall not formulate explicitly
any of the corresponding assertions.) In the trivial case we have

@*(R" x R™) = RB"x T (L) X L2 x R,
where T2(LL)X I2 means the semi-direct product with respect to the
action (S, 4) — SA4 of L2 on T2(L},), SeT%2(L},), Ae L. On ®2(R"™x R™)
there are coordinates
bﬂ’ bﬂu Bozy /31‘_7'7 ajy agj? a_;:m $i,
det|a;| # 0, and the action of &52(1?,” x R™) on jz(R” X R™) is given by
(21) (ij bﬁ’ bgu bgm bﬂu’ a]’ a’oja a’jk’ )( ’ ?j ’ yu ?/on yzj)
- ( 4 bﬂy 9 (bﬂjyﬂ+bﬁy]) T (bﬁOJ ﬁ+bﬁyOJ)Aon
(b3’ +bﬁkyol+bﬂolyk+bﬁykl)A:'cAtln (b y* + bsys) A ar, AT AT),
provided a4}, = 4%, aojAf)k = &b (cf. [4]).
Let C be a connection on @*(E),
(=) —Jm(t ba (t) bgm( 7bgij(t)’ a';:(t)y a’og( ) ]k(t ‘)7
where
b;(w) = 6§a Zz(m) = b;m'(w) =0,
5i(@) =0, di(x) =a;(x) =&, aj(z)=0.
Introduce the corresponding Is analogously to (17). Then (21)
implies that C determines a splitting J:*E > J*E of the form

Yooi = ;;iyﬂ’
(22) wio; = oy’ + Iy — Tk,
Yoii = Lhois¥" + ThiYa; — LiosYors
Yie = Toin¥” + Thinyls + Thoiny? — Tine¥i + Tt — Ty — Tojucti-

6 — Colloquium Mathematicum XXX.2
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Our next investigation will be based on the comparison of (20)
and (22). Naturally, we shall deduce all conditions in an invariant form.

8. Comsider first the lateral projection I} and a commutative exact
diagram

0
0 0

) } L

0—J'EQ(® T*(B))—>J (J'EQT*(B)) <5 J'EQT*(B)—0

| o,

(23) 0—J2E ® T*(B) > BE<-———— J2E->0
l lzg j?i \Lj;
~ 7
0> NEQT*(B)—— > P E < —————=-Jl1F >
l ! i3 l
0 0 0

By the first two formulas in (22) there should be a splitting y,: J'E

~J*E compatible with the diagram. By Lemma 2, the obstruction is an
element of Hom(J'E ®T*(B), J'E @ T*(B)), which will be denoted by
w,(y). In coordinates, w,(y) = 0 means

(24) P;ggi = 07 FE{)’&' = 07 F;%;- = 07 F;zlcolj = 0.

Taking into account the second lateral projection I, we obtain
a commutative exact diagram:

0 0 0

| ' v v

| Lo

(25) 0—>J2EQ®T*(B) — > J3E S J2E—>0
12
o n
0—J1E® T*(B) S J2E < ——————— JIE—>0
v v h v
0 0 0

By the first and third formulas in (22) there should be a splitting

ve: J'E > J*E compatible with the diagram. The obstruction w,(y)
is an element of Hom(J'(E®T*(B)), J'EQT*(B)). In coordinates,
w,(y) = 0 is equivalent to

(26) T =0, Tpk =0, I =0, I =0.
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In what follows, we assume w,(y) = 0, w,(y) = 0. Then (24) and (26)
imply that there is a splitting y,: E —J'E compatible with the
following diagram (a =1, 2):

0 0

0
i i’ Yo@la ¢
0>E®(®T*(B)—>JYEQT*(B)< JE®T*(B)—0

L

0>J1EQT*(B)— > JPE<————— J1E—>0
.1
]
| s
0—>E®T*(B)———>JIE<———— FE—>0
\ ! i i
0 0 0

By the first three formulas in (22), the induced connection on
E®T*(B) should be reducible to the connection C, on E, i.e., there
should exist a linear connection L, on B such that the induced connection
in the top row of (27) is of the form C,® L,. Further, by the third and
fourth formulas in (22), we conclude that the connection C? of the top
row of (23) should satisfy

(28) ¢ =0,QL,.

(In particular, the connection induced on the intersection E®(é T*(B))
of the kernels of both projections j; and I} is C,®Q L, ® L,.)

It remains to deduce an analogous condition for €3, but this requires
an auxiliary consideration.

9. Let E, and E, be two vector bundles over B, let C, be a connection
on J' E, reducible to &'(E,), a = 1, 2, and let both C, and C, have a com-
mon underlying linear connection L. Then the splitting y, or y, is of the
form

(29) Yo = I5:9°, g = Iiyy® + oyl — Ty,
or
(30) Yoi = Fﬁiy"a ?/?j = Fﬁij?/”‘i‘ Fﬁii‘/ﬁ" — Fil;‘ylt’

respectively. Hence we may write
Ci(®) = j3(t%, b5(2), b (D), a5(1), &) = jhe: (D),
Ca(@) = jo (¥, ba(2), blu(8), 45(1), o) = Jrea(?).
Prolonging the action of the product @(E,) x®(E,) on E,RQFE,, we

obtain an action of the first prolongation (®(E,)x @ (E,))' on J'(E,® E,).
Since the sections g, and g, determine a section (g, , 0;) of (P (E,) x P(E,))},
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C(x) = jile1(?), 02(t)) is an element of connection on (P(E,) x P(E,))".
Thus we obtain a connection on J'(E,® E,;), which will be said to be
the tensor product of C, and C, over L and will be denoted by

O = 01@02.
L

By the definition, the coordinate form of the above-given action of
(P(E,) xD(E,))' on J'(E,QE,) is

(31) (Ej, bga giy bﬁ, bfn" a’;‘.9 wi)(wiy ?/ala ygl)
) b0, (b B b 4]

143

Using (31), we deduce that C,® C, determines a splitting
L

JYE\® By) > J* (B,® By)
of the form
Yor = Iyy™ + I'hiy™,

(32) a a a, a q, a
yi]'l = I'g;y" + F;}ijy “ Fm?/;m+ Fﬁi?/j”— il;?/kl-

Further, let C be a connection on J'(E,® E,) and let C, be a connec-
tion on @'(E,) with an underlying linear connection L. We say that
C is decomposable with respect to C,, if there exists a connection C, on
@'(E,) with the same underlying linear connection L such that

0 == Ol®02'
L

By (32), if C is decomposable with respect to C,, then the second
factor C, is uniquely determined.

10. By the second and fourth formulas in (22), the connection Cj
on J'(E®T*(B)) should be decomposable with respect to C,, i.e., there
should exist a reducible connection M on J'(T*(B)) with the underlying
linear connection L, such that
(33) Cy =C, g M.

L,y

Comparing now (20) and (22), we see that we have found all relations
characterizing (22) with respect to (20). Hence we have proved

PROPOSITION 3. A connection y: J°E — J*E is reducible to ®*(E) if
and only if all the following conditions are satisfied:

(a) w1(y) = 0, wy(y) = 0;

(b) the connection of the top row of (27) is of the form CyQ® L,, where
C, is the connection of the bottom row of (27) and L, is a convenient linear
connection on B, a =1, 2;
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(c) the connection CY of the top row of (23) is of the form C,® L,, where
C, 18 the connection of the bottom row of (23);
(d) the connection CF of the top row of (25) is of the form C,® M, where
Ly

C, is the connection of the bottom row of (25) and M is a convenient connection
on J'(T*(B)).

11. Assume in the sequel that C is reducible to éz(E). Beside &2(E)
and @*(E), [1], one can naturally introduce also the following subgroupoids

of 2(E): )
@L(E) = {0 D*(E); b0 < [I*(B)},

@(E) = {0 ®2(E); b6 « I1*(B)},
B (E) = {0 B*(H); b0 < [1(B)};

I 2(B) or II?*(B) means the groupoid of all invertible semi-holonomic or
holonomic 2-jets of B into B, respectively.
In the trivial case we have

®2(R" x R™) = R"x T2(L.) x L2 x R",
@2 (R" x B™) = R*x T2 (LL) X I x R",
(34) &*(R" x R™) = R" x T*(L}.) X L x R",
@2 (R" x R™) = R" x T (L)) X L2 x R™.
@*(R"xR™) = R*"xT:(LL) X L. xR™
By (22), we obtain immediately i
PrOPOSITION 4. A connection C on D*(E) is reducible to

(a) (iiﬁ (E) if and only if the connections L, and L, coincide,
(b) S2(E) if and only if the connections C, and C, coincide.

12. Assume L, = L,. Then (22) implies that C is reducible to &; (E)
if and only if ]"["jk], = 0, provided the square brackets denote antisymme-
trization. We shall give an invariant explanation of this condition.

Libermann. ([5], p. 159) has established an identification

(35) J'T*(B) ~ T**(B),

There T**(B) is the vector bundle of all semi-holonomic 2-jets of B into
R with target 0. Consider the injection ¢: T°*(B) - T**(B) of the subspace
w*(B) = T**(B) of all holonomic jets. According to [3], we have the
exact sequence

(36) 0 — T**(B) - T*™*(B) 5> AT*(B) -0,
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where A is a special case of the difference tensor map. Taking account
of (35), the above-mentioned connection M determines a splitting u: 7%*(B)
— J'T**(B). We say that M is symmetric it u(T**(B)) = J'T**(B). We
have a commutative exact diagram

0 0 0
v ¥ v
0—T?*(B)®T*(B)— J1T?** (B)<=— —— = T**(B)—0
(37) O—>T2*(B)®T*(B)—>J1T2(B)$Tﬂ*(3)_>o

;0

0> A2T*(B) ® T*(B)—>J(A*T*(B)) —>A2T*(B)—0
v ¥ it
0 0 0

where j'4 means the first jet prolongation of the morphism 4: T%*(B)
— A2T*(B). By Lemma 2, M is symmetric if and only if

(' A)ui = 0 Hom (T*(B), A T*(B)Q T*(B)).

Applying the relation L, = L,, we find the following coordinate
form of u:
Yioi = — I5Yi

(38) 1 1 1
Yijgp = — ey — LYy — ij?/u-

Using the coordinate expression of the difference tensor map (see [3],
p- 139), we infer that M is symmetric if and only if

(39) 0 = Yump = _F[lij]kyP
Hence we have
PROPOSITION 5. A connection C on ®@2(FE) is reducible to

(a) D2(E) if and only if L, = L, and M is symmetric,
(b) &% (E) if and only if C, = C, and M 1is symmetric.

13. It remains to treat the reducibility of C to ®2(FE). Assume that
C is reducible to @2(E). By (22), C is further reducible to @%(E) if and
only if I'ji;y = 0 and I, = 0. Denote by y the restriction of y to
J2E. Since C is reducible to @*(K), the values of y lie in J'J?E. Consider
the injection i: J2E — J2E. By [3], we have the exact sequence

(40) 0—J*E-5 PES BEQAT*(B)— 0,

where 4 is the difference tensor map. The morphism A4 is prolonged to
a morphism j'4: J'J?E - J'(EQA*T*(B)) and we get a commutative
exact diagram
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0 0 0
¥ ¥ v
0>NERT*(B)——>JIREC———————— J2E—0
|5
Y
(41) 0—>J2EQ®T*(B)—>J'J*E s J2E—0

| B
0—E®A2T*(B)RT*(B)—>J(E® A2T*(B)) —> E®A2T*(B)—0
v N
0 0 ' 0

If C is reducible to @*(F), then there exists a splitting in the top row
compatible with the diagram. By Lemma 2, the obstruction is an element
w(y) of Hom(J*E, EQ A*T*(B)® T*(B)). Using C, =C, and y{ = yg,
we simplify the last row of (22) to the form

Yiie = PﬁmyﬁwL Fsik?/f -+ ngkﬁ'/g“‘ Fzgjky? + Tyl — Filk?/fj— Fglk.%al

By direct evaluation, we infer that w(y) vanishes if and only if
0 =y = L ¥’ — Iignyi-
Thus, finally, we obtain

PROPOSITION 6. A connection C on qSZ(E) 18 reducible to ®*(E) if and only
if 0, =C, and w(y) vanishes.
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