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A GENERALIZATION OF THE DIRECT PRODUCT
OF UNIVERSAL ALGEBRAS

BY

ABRAHAM GOETZ (NOTRE DAME, INDIANA)

This note is an attempt to generalize the direct product of algebras
so that it could be applied to algebras not necessarily similar. Such genera-
lized product might be useful in constructing various algebras from known
ones. It is in the spirit of the treatment of universal algebras in Mar-
czewski’s independence theory (see [3]), where the clone of all algebraic
operations is essential rather than the fundamental operations themselves.
Since the assumption of similarity of algebras is sacrificed, isomorphism
and homomorphisms must be replaced by weak isomorphisms and weak
homomorphisms in the sense introduced in [1]. The product constructed
here will have the associative property. Also the projections of the product
onto the factors are weak homomorphisms.

1. Notation. Let A, = (4,, £,),teT, be a family of finitary algebras
indexed by the elements of a set 7. We shall denote by A4, = [,] the
set of all algebraic operations of the algebra %, i.e., all operations which
can be obtained from £, and the trivial operations ¢}, such that

1%y ... X, 6 = T,
by compositions. The set of all algebraic n-ary operations is denoted
by Af or [2,]".
Elements of the cartesian product 4 = [[ 4, will be denoted by

teT

the letters #, vy, ..., a, b, ... and considered as mappings T — | 4, such
teT

that x(f)eA;. The mapping p,: A - A, defined by p,(x) = 2(t) is called

the ¢-th projection. If E is a subset of 4 = [] A,, then we use the notation
teT

E(t) = p,(B) = {=(t)| weE}.
Elements of the product A™ = [T A are denoted by Greek letters,

teT

w,a,f,... and considered as m-ary operations on A =t[l A;; namely,
€
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if #,,...,2,ed, then @, ...z, 0 is such an element of A that

(1) [@y... 2, 0](t) = 2,(2) ... 2, (}) 0w (F)
for every t.
We denote by A the union of all A™:
A= A»,
n=0

The elements of A, [respectively A,], unless they are projections
2(t) [w(?)] of an element of A [A], are denoted by letters with a superscript
t: o' [o']

In the case of two algebras A = (4, Q), B = (B, Q) we shall use
the notation 4 X B, elements of A X B are denoted by (x, y), elements
of [2]X[2] by o X w.

For a subset U = T we denote by A, AY, A, the corresponding
partial products; more precisely:

(@) dy=[]a, ap=][]ap, a,=uU4p.
teU teU n=0

Elements of A, [respectively A,] are denoted by zU [respectively
oU], unless they are restrictions of an element = [w] of A [4] to U in
which case we rather use the notation #|U [w]| U].

For any subset ¢ =« A we denote by gy the restriction of p to Ay,
Le., oy = {w|U: wep}.

Given a partition # = {U,: seS} of the set T into disjoint non-empty

subsets, T = (J U,, we define the subset o, of [[ Ay as
8 geS

(3) 0, = {Esn Ay :w(s) = | U, for some we[g]},

geS
where [¢] is the set of all operations in A derived from the operations
of o and the trivial operations by composition.

2. Weak homomeorphisms. We recall the notion of weak homomorphism.

Given two algebras 8 = (B, 2) and A = (4, 2), a mapping h: B—> 4
is called a weak homomorphism if

(r) for every we Q2™ there exists an we[Q2]™ such that

(4) (Y. Ypo) = h(y,) ... h(Y,) 0,
and
(1) for every weQ™ there exists an w[2]™ such that (4) holds.
We shall call mappings satisfying condition (r) r-morphisms, those
satisfying (1) will be called I-morphisms. Thus, a weak homomorphism is
a mapping which is simultaneously an 7-morphism and !-morphism.
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The class of all universal algebras with I-morphism forms a category
which we shall call the I-category of algebras. The category of all universal
algebras with r-morphism will be called the r-category. The category
of all algebras with weak homomorphism as morphisms will be called
the lr-category of algebras. Note that the isomorphisms in all three categories
coincide; they are the weak isomorphisms of [1].

3. The o-product. Let o be a relation in (i.e., a subset of) [] A,
which satisfies the following conditions: beT

(i) o= A4, 1i.e., for every wep all w(f) are of the same arity,

(i) [e](t) > 2(2).

We define the p-product of the family {,} as the algebra

(5) = = ge%=““’9)=(ﬂ‘4“ ).

The set of all algebraic operations of U is [¢] and the set of all
algebraic n-ary operations is [o]™. We shall use the notation %X ,B for
the product of two algebras.

LEMMA 1. If o satisfies conditions (i) and (ii), them [o](t) = A, for
every teT.

Proof. Obviously, since o < 4, [¢](f) = A4;. It remains to prove the
other inclusion. Let o'eA4,. The operation ' is the result of a finite chain
of compositions of trivial operations and operations of 2,. We call the
number of operations involved the length of «'. If * is non-trivial and
of length 1, then «’e¢®,, and by (ii) there exists an we[p] such that
o(f) = o'. Suppose now that for every operation a‘eA, of length <n
there exists an operation ae[p] such that a(f) = o'. Let w‘c¢A, be of
length n+1. Then we can find an operation o’eA and operations

d,d, ..., d, of length < n, such that
o =dd... dad.
By our assumption there are operations a, a,, ..., qze[¢] such that
d =a(t). d& =a,(t),...,d = a,(f). Set o = a,... a,a. Then we[p] and

o(t) = o'. Consequently, 4, = [p](?).
THEOREM. 1. The projections p,: A — A, are weak homomorphisms of
algebras.

Proof. Let we[p] be an algebraic n-ary operation of %;,. By the
lemma, o(t)eA{™ is an algebraic n-ary operation of %,, and

(6) Pi(@y ... By 0) = @5(2) ... B (D) () = Py (@) ... Py(@,) ().

Thus p, is an r-morphism.

Given now an operation w‘eA{™, we can find (using Lemma 1) an
operation weA™ such that o' = w(t) and (4) holds again. Thus p, is
an l-morphism too.
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Two algebras B = (B, 2) and B* = (B, Q%) with the same set of
elements are called equivalent, in symbols B ~ B*, if [2] = [2*]. Equi-
valence can also be expressed in terms of weak isomorphism by saying
that B and B* are equivalent if and only if the identity mapping B > B
is a weak isomorphism.

It is easy to notice that if 9, ~ A; for every ¢, then

’ ”em'N”e‘H:'

teT teT

If, moreover, [¢] = [o*], then

”e%‘ N”e‘m:'

teT teT

4. Associativity of the p-product. Consider a subset U < T and
a partition & = {U,: se8} of T into disjoint non-empty sets.

LEMMA 2. If o satisfies conditions (i) and (ii), then oy satisfies the
same conditions restricted to U; in other words, oy < Ay, [ovl = A; for
teU. '

If wVeoy, then wV = w|U for some weA. Therefore there exists
an n such that weA™ and o|UeA{Y = Ay. Thus oy = Ay.

The second condition is obviously satisfied since it is a particular
case of (ii).

LEMMA 3. If o satisfies (i) and (ii), then o, satisfies the same conditions
Jor the family of algebras {(Ay,, Ay,): s€8}.

Proof. Let wep,. Then there exists an wep such that w(s) = o| U,.
But weA™ for some n, thus o| U, = o(s)cAF. Consequently, we[] A({})
which shows that i

e = U [] 48).
n=0 geS

To prove the second property, take w®cA{). There exists an we[o]™
such that w° = o |U,. Let w<[] AP be defined by w(s) = w|U,. Then

seS
wep, and, obviously, w(s) = w®. Thus [,](s) o Ay, for every seS.

LEMMA 4. [p,] =0

Proof. It suffices to prove that [g,] = o,. We shall prove the lemma
by induction with respect to the length of the operation we[p,]. If ® is
of length 1, then w ¢ g, . Suppose now that all operations ae[o,] of length < n
belong to g, and let we[p,] be of length n+1. Then w =a,,..., a,a for
someaep,and ay, ..., a, of length < n. Consequently, there exist operations
ay @y, ..., aye[o] such that a;(s) = ;| U, and a(s) = a| U,. The operation
©w =a,...qae[p] and o| U, = w(s). Consequently, wep,.
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THEOREM 2. The canonical mapping ¢: ” A, [] Ay, defined by
formula 8e8

(7) [e(®)](s) = »| U,

48 a weak isomorphism of algebras

” QI‘_>17¢.>,,(I79U3 )

Proof. For a given Ze[] Ay, define <A as follows:
8eS

z(t) = [Z(8)](t), teU,, seSf.

Then, obviously, Z = ¢(z) and so the mapping is onto. On the other
hangd, if #, ye 4 and ¢ # y, then there exists a ?,eT such that z(¢,) #~ y(t,).
Fu:'rther, toe U,, for some s, and, consequently, z| U, +# v| Us, or [p(x)](s,)

= [p(¥)](s,e Thus ¢(x) # ¢(y), and the mapping is one-to-one.

Let now we[o]™ and let w(s) = o|U,. Then wep, and satifies the
condition

@) ... (@) 0 = @(, ... T, 0)
ghowing that ¢ is an r-morphism. Indeed,
[lp(@ ... 2,0)1(8)] () = [, T, ... 2,| Uy | U] ()
= [[p(@)1(s) - [@(2,)1(8)] (2)

In order to prove that ¢ is a weak isomorphism it suffices now to
prove that o — w is a one-to-one mapping of [¢] onto [g,] = o,. That
the mapping is onto follows immediately from definition (3) of p,. To
prove that it is one-to-one take w,, w,eA and w, # w,. Then for some
tyeT we have w,(t,) # w,(ty). Let te Uy . Then we have wy| Us, # 2| U,
but this means that w,(s,) # w,(8s,) and W, # Wy

S. Examples. A. The direct product of similar algebras is a particular
case of g-products. In this case all 2,’s coincide and the relation p is the
diagonal of the product [] Q,.

teT

The direct product is useful in constructmn of new algebras from
the known ones. A factorization of an algebra into a direct product gives
additional insight into the structure of the algebra. For example Swiercz-
kowski’s four-element algebra & (see [3]) is the direct product of two
Post algebras P..

We think that the notion of p-products might have similar appli-
cations. The following example deals with the g-product of trivial algebras,
i.e., algebras with trivial operations only. The direct product of such
algebras is always the trivial algebra.
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B. Consider n» trivial algebras A, = (4,;,9), 1 =1,2,...,n The
sets 4™ consist of all trivial k-ary operations ¢ (j =1, 2, ..., k). We use
the same notation for the trivial operations in all algebras. Let ¢ consist
of one non-trivial n-ary operation

@ = (€7, €y ..., €y).

The p-product
n n
[].%=([] 40 )
i=1 i=1

is an n-dimensional diagonal algebra introduced by J. Plonka in [4].
The representation theorem proved by J. Plonka for diagonal algebras
shows that every m-dimensional diagonal algebra admits this kind of
factorization.

We shall return to some aspects of this example later.

C.Let A = (4, Q) be a universal algebra and B = (B, {U}) a semilat-
tice. Denote by U™ the m-ary operation z,...x, U" =, Uz, U... Uz,
of B. Let now pe[2] x [{U}] consists of all pairs [w, U ™*)], where we2
and n(w) is the arity of w. The g-product A X ,B is a particular case of
the sum of a direct system of algebras intruced by J. Plonka in [5]. Here
B serves as the set of indices, all algebras of the system are isomorphic
and the homomorphisms ¢; are isomorphisms.

D. Let 8 = (B, v, A,’, a) be a Boolean algebra with an additidnal
constant e distinct from 0, I."As shown in [2] among the derived operations
of this algebra there are the binary operations

zVy =fan(zvy)]vVvie AzAay],
zNny =[avaevylald@Aay)]

which are distributive with respect to v and A and (B, U,n, ) is a Boo-
lean algebra with unity a and zero a'.

Therefore the algebras B and (B, v, A, U,Nn,’) are equivalent.
The latter algebra admits a p-factorization into two Boolean algebras.

Let A, = (4,, v, A, ') be the restriction of (B, v, A,’) to a, ie,
A, ={a A z: xeB} and A, = (4,, v, A, ') be the restriction to a’, i.e.
A, = {a’ A x: x<B}. Thus A, and A, are subsets of 4 and for any two
elements if x,ed,, z,ed,, then x, A z, = 0. Let ¢ = {v XV, A XA,
VXA, AXV,'}. Then the p-product A; X ,A, is isomorphic to (B, v,
Ay, U,N, ), the isomorphism being @: (x,, 2,) > ©;, V 5.

One sees immediately that &~ !(z) = (a A ,a’ A z) for zeB, thus
@ is one-to-one and onto. We shall check that & is a homomorphism
for the operation U; other operations lead to similar computations. Let
(D1y @3)y (Y19 Y2) €A1 X Ay Then D[(zy, 2,)(V X A)(Y1y Y2)] = P(2, V Yy,
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By AYy) =2, VYV (Ta AY;). But since 2, <a,y,<a and =, <a,
Yy, < a', we have ¢, =a A (¥, V&), ¥y =aA (Y VY, and 2, = a’ A
A (2, vV o), Y3 = a’ A (Y, vV y,). Consequently,

D(2y, 25)(V X A) (Y1, ¥2)]
= (@A (@ Vo) Vv @V y)]) Ve A @V a) A (1A )]
= [a A (Q(wn %) V D(yy, ?/2))] v [a' A D(my, @3) A D(Yy, Ys)]
= O(@y, #;) Y P(¥y, ¥2)-

6. Maximal p-products. We call a p-product of algebras maximal
if [o] = A. It is obvious that any two maximal p-products of a given
family of algebras are equivalent. Maximal p-products might be useful
in investigating generating sets and independence.

THEOREM 3. If [o] = A and if each of the algebras N, is generated
by a finite set G, of cardinality < n (n independent of t), then the product
[1 G, generates the algebra [], U,.

teT teT
Proof. Let © be an arbitrary element of A. By our assumption
about @, there exists an n-ary operation o’ such that

x(t) = o) ... 2l o', where zlcG,.

Since [¢] = A, the operation weA such that o () = o’ is an algebraic
operation of A. The elements x,,...,x, defined by =,(t) = i, ...,,(t)
= a!, belong to []G, and # = 2, ... x,w. Thus [] G, generates A.

teT teT

Note that if T is a finite set, we can drop in Theorem 3 the assumption
that the cardinalities of the generating sets are bounded or even finite.
We have the following:

THEOREM 4. If [p] = A and card T < N,, and if for every t, G, generates
A,, then [] G, generates the o-product.

teT

Proof. Let xeA be an arbitrary element. Each of the projections
x(t) of this point is generated by a finite number n, of elements of G*.

The number » = max n, is finite because the cardinality of 7 is finite.
teT

For every t there exists an nm-ary operation o' and a system of elements
at,...,a eA’ such that o' = ... al o'. Define now z,,...,x,e4 and
weA™ by x;(t) =2t (i =1,...,n) and () = o’. Obviously, z,,...,

w,e[]G, weA =[p], and =,...2,0 =2 Thus [].G, generates the
teT : teT
product.

THEOREM 5. In a maximal o-product n distinct elements a, ... a, are
independent if and only if for every t the projections a,(t),...,a,(t) are
distinct and independent.
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Proof. 1. Suppose that the elements a,,...,a, are distinct and
independent but for some ?,¢7" the elements a,(t,), ..., a,(¢,) are not.

Then there exist two distinct n-ary algebraic operations ., w.® ¢A, such
that

t t
(8) @1(to) + v @y (to) 0 = @y (to) - .. @, (3o) @,
Define two operations w,, w,eA™ by formulae

w? fort = 2, w? for t = t,,

wy(t) =

w(t) =
() ey for t +#£t,, ey for t #1t,.

Since the algebra is maximal, w,, w,e[p] and we have
a]_ e anwl = al coe anwz,

because w, (t) = w,(t) fort s {,and (8) holds for ¢ = ¢,. But this contradicts

the assumption of independence of the elements a,,...,a,.

2. Suppose now that a,(?), ..., a,(t) are independent for every ¢ and
let w,, w,e[0]™ be two-operations such that

al coe anwl = al cee aln(D2.
Then, for every ¢,

a1 (1) ... 4, (D) 01 (t) = ay(?) ... @, (t) ws(t)

and by the assumption of independence of a,(?)...a,(t) we have w,()
= w,(t) for every ¢, or w; = w,. But this means that the elements a,, ..., a,
are independent.

Remark. Note that the second part of the proof does not use the
assumption that [¢] = A. Thus if for every ¢ the ¢-projections of n elements
@y, ..., G, of any o-product are independent, then the elements themselves
are independent.

The following theorem characterizes the maximal p-product:

THEOREM 6. The maximal o-product of a family of algebras {W,} is
the product of this family in the r-category of universal algebras.

Proof. Let 8 = (B, 2) be any universal algebra, and let %,: B — A4,

be an r-morphism for every ¢e T. Define h: B — [] 4; in the obvious
way, i.e. for yeB teT

[2(y)1(t) = R(y).
Obviously, we have h,(y) = p,(h(y)) and kb is determined uniquely
by this property. o
If all mappings h, are r-morphism, then given w[Q2]™ there exists
in every algebra %, an operation o‘eA{™ such that

(9) B(Yy-ee Yu®) = hy(yy) -.. h’t(yn)wt



DIRECT PRODUCTS OF ALGEBRAS 175

for every n elements ¥, ..., ¥, <B. Let weA™ be defined by w(t) = "
Since the g-product is maximal, w is an algebraic operation. This operation
satisfies the condition

B(Yy .o Yp®) =h(y,) ... h(y,) ®

since (9) is just another form of the identity

(A (Y1 Yn@)1@) =[h(y) ... h(y,) 0](2).

Consequently, h is an 7-morphism, which completes the proof of the
theorem.

The p-product of example B of section 5 is a maximal g¢-product of
trivial algebras. Since all elements of a trivial algebra are independent,
Theorem 5 enables us to find the greatest number of independent elements
of a diagonal algebra knowing its p-factorization. If the cardinalities of
the trivial algebras are m,, m,, ..., m;, then the cardinality of the g-product
is mym, ... m;, and the largest independent set of elements consists of
min (m,, m,, ..., m,) elements. On the other hand, if the factors are not
one-element algebras, one can always find two distinet elements which
are not independent, e.g., (z,, Z3,..., &,) and (¥4, T3y ..., x,) With z, # y,.

7. Quasi-maximal p-products. Another look at the proof of Theorem
5 shows that the property of p, which was essentially used in the proof,
was that operations weA™, such that w(f) = €* for all but one value
to and w(t,) is an arbitrary operation of %, , belong to [¢]. This leads to
the following definition of quasi-maximal p-products for which Theorem
5 holds.

Denote by A4*™ the set

(10) A" = {weA™: w(t) = e} for all but one value t}

and let A" = |J A*™, A p-product is called gquasi-maximal if [p] > A*.
n=1
Obviously, every maximal p-product is quasi-maximal since 4A* < 4.

This definition implies immediately the following theorem:

THEOREM 7. A quasi-maximal product of a finite family of algebras
18 maximal. .

Proof. Indeed, one can easily notice that [A*]™ consists of all
n-ary operations weA™ such that w(f) is the same trivial operation for
all b:u); a finite number of values of ¢. If the family is finite, then [A4*]™
= A™.

In the infinite case quasi-maximal p-products are not necessarily
maximal.

As we mentioned before, the following generalization of Theorem
5 holds:
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THEOREM 8. Distinct elements a,, ..., a, of a quasi-maximal o-product
of a family of algebras {W,} are independent if and only if for every t the
elements a,(t), ..., a,(t) are independent.

Among all quasi-maximal p-products there is a distinguished one.
This is the product []4.%,.

Tet
To justify this definition, one has to check that A* satisfies condition

(ii) for the relation p, but this is obvious in view of (10).

We call a p-product equivalent to this one, i.e., such that [p] = [4*]
a special quasi-maximal p-product. It is clear that if a special quasi-
maximal product of a family {2} is maximal, then every quasi-maximal
product of this family is maximal.

Note also that if a g-product is maximal (quasi-maximal) and = is
a partition of the index set, then the partial products of section 4 are
maximal (quasi-maximal) too.
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cation, the paper by S. Fajtlowicz, Birkhoff’s theorem in the category of
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ours. In particular, Fajtlowicz studies what we call maximal g-products
(with a reference to W. Narkiewicz as the originator of the concept) and
mentions the result of our Theorem 6. Since every p-product is a reduct
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