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TERMINAL SUBSETS OF CONVEX SETS
IN FINITE DIMENSIONAL REAL NORMED SPACES

BY

MAREK LASSAK (BYDGOSZCZ)

Generalizing the notion of terminal point in metric spices we introduce,
by analogy to the classical definition of extreme subset in linear spaces, a
notion of terminal subset. We present some properties of terminal subsets in
metric spaces and characterize ter,linal subsets of convex sets in finite
dimensional real normed spaces.

1. Terminal subsets in metric spaces. Let M be a metric space with
metric d. As in [1], p. 33, we say that y is metrically between x and z and we
write xyz if d(x, y)+d(y, z) =d(x,z) and x # y # z.

A point t of a set S < M is called a rerminal subset of S if it is not
metrically between any two points of S (see [1], p. 53).

We can generalize this notion as follows. We call a subset T of a set
S = M a terminal subset of S if any two points of S, such that a point of T
is metrically between them, belong to T, ie. if

(1) xyz does not hold for any x€S, yeT, zeS\T.

Obviously, ¢t is a terminal subset of S if and only if [t} is a terminal
subset of S.

The notion of terminal subset is an analog of the notion of extreme
subset in a real linear space L. A subset E of a set S = Lis called extreme in
S if any two points x, z of §, such that a point of E lies on the segment

segm {x, z} = {(1-a)x+az; 0 <a <1},
belong to E. In other words, a subset E of S is extreme if
2 yé¢segm{x, z} for any xeS, yeE, zeS\E.

A point e of S = L is called extreme if {e] is an extreme subset of S.
A set D = M is called d-convex (or convex relative M, cf. [3], p. 285) if
for any x, ze D from xyz it follows that yeD.
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Properties of terminal subsets formulated in Theorem 1 below are
analogous to well known properties [in brackets] of extreme subsets. The
proof is similar to the classical one.

THEOREM 1. In an arbitrary metric space [in an arbitrary real linear
space] the following properties hold.

1. Any union of terminal [extreme] subsets of a set S is also a terminal
[extreme] subset of S.

2. Any intersection of terminal [extreme] subsets of a set S is also a
terminal [extreme] subset of S.

3. If Tis a terminal [extreme] subset of S and S is a terminal [extreme]
subset of P, then T is a terminal [extreme] subset of P.

4 If TcS < P and if Tis a terminal [extreme] subset of P, then Tis a
terminal [extreme] subset of S.

5. The empty set Q and the set S are terminal [extreme] subsets of S.

6. A point t of a d-convex [convex] set D is terminal [extreme] if and
only if the set D\{t} is d-convex [convex].

Remark. We can also consider a common generalization of the notions
of terminal subset and of extreme subset. Denote by #(X) the power set of
an arbitrary set X. Let ¥ <« #(X) and let #: ¥ —» #(X) be a function. If
AcBc X and if

An®(K)c| (#(M); Me 2 and M c AnK])

for any K e 2 such that K < B, then we call 4 a ®-extreme subset of B. If X
is a metric space [real linear space] and @ maps any set {x, z! onto the set
{y; xyz) [onto segm {x, z}], then we get the notion of terminal [extreme]
subset. Parts 1-5 of Theorem 1 can be generalized for ®-extreme subsets
(without extra restrictions, part 2 holds only for finite intersections).

2. Some lemmas. Let R" denote a Minkowski-Banach space, i.e. an
n-dimensional real linear space with metric d induced by a norm: d(x, y)
= ||ly—x||. Below, in the definition of a face and in Lemmas 1-3 only the
linear structure of R" is needed.

Let S be a convex set in R" and let beS. Sets of the form

F,(S) = {b} U {a; aeS and besegm {a, c} for a point ceS)

and the empty set are called faces of S (comp. [2], part II, § 4, exercise 4).
By proper faces of S we understand the faces of S different from @ and S.
By affK denote the affine hull of a given set K = R".

Lemma 1 ([2], part II, § 4, exercise 4). For any convex set S = R" and
any beS we have

1. Fy(S) is convex.

2. SnaffF,(S) = F,(S).

3. If ae F,(S), then F,(S) < F,(S).
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4. If F,(S) = Fy(S) and F,(S) # Fy(S), then dim F,(S) < dim F,(S).

LEMMA 2. If S is a convex set and be S, then

1. F,(S) is the smallest extreme subset of S which contains b.

2. E is an extreme subset of S if and only if E is the union of some faces of
S [moreover, E is the union of all maximal (with respect to inclusion) members
of the family of faces of S being subsets of E].

3. If segm{v, x| is a subset of the union of some proper faces of S, then
at least one of them contains both v and x.

Proof. 1. Let x, ze S and let a point ye F,(S) lie in segm {x, z}. By the
definition of F,(S) we have x, ze F,(S). Moreover, from part 3 of Lemma 1 it
results that F,(S) = F,(S). Hence x, ze F,(S). Since the points x, z .are
arbitrary points of S, we get that F,(S) is extreme in S. From the definitions
of F,(S) and of an extreme subset it follows that F,(S) is a subset of any
extreme subset of S which contains b. Therefore F,(S) is the smallest extreme
subset of S which contains b.

2. Let E be an extreme subset of S. If ye E, then by the first part we
have F,(S) = E. Since ye F,(S), E is the union of all faces F,(S) with yeE.
The inverse implication results immediately from part 1 of Theorem 1.

Now, the part in brackets is a consequence of part 4 of Lemma 1 and of
the finiteness of the dimension of R".

3. Let segm {v, x} be a subset of the union of some proper faces of S.
Thus the point u = Jv+4x belongs to a proper face F, (S) of the union.
From part 3 of Lemma 1 we infer that F,(S) = F,(S). Obviously, x, ve F,(S).
Hence x, ve F(S).

Lemma 2 is proved.

A face F of a convex set S can be equivalently defined (cf. eg. [5],
p. 162) as a convex extreme subset of S. Applying our Theorems 2-4 to
a face F of S we need a point y such that F = F,(S). It is known that
F =F,(S) if and only if y belongs to the relative interior of F (cf. [2],
part II, § 4, exercise 4b).

The set

cone,S = | {y+A(x—y); 1>0),
xeS

i.e. the smallest cone with vertex y which contains a given set S is called the
induced cone of S with vertex y. We need only the case where yeS (then,
obviously, yecone, S) and where § is convex (then cone, S is convex, cf. [5],
p. 14).

LemMma 3. For any convex set S and any yeS we have
F, (cone, S) = cone, F,(S) = aff F (S).

Proof. F,(cone,S) consists of y and all points xecone,S such that
yesegm |x, z; for a point zecone, S. Hence F,(cone, S) consists of y and all
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xecone, |x,}, where x; is a point of § such that yesegm {x,, z,} for a point
z,€S. Thus F(cone,S)= {x; xecone,{x,} for a point x,eF,(S),
= cone, F,(S).

From the definition of F,(S) it follows that cone, F,(S) is symmetric with
respect to y. Moreover, cone, F, (S) is convex because (by part 1 of Lemma 1)
the face F,(S) is convex. From [2], part II, § 1, Corollary 2, we get that

-cone, F,(S) is a plane. Moreover, we have F,(S) < cone,F,(S). Thus we
obtain aff F,(S) = cone, F,(S). Since aff F,(S) is a cone with vertex y, we
have cone, F,(S) c aff F,,(S). Thus cone, F,(S) = aff F,(S).

Denote by X (y, 6) the sphere {w; d(y, w) =9} and by B(y, J) the ball
{w; d(y, w) < é}. It is known that B(y, d) is closed, n-dimensional, convex
and symmetric with respect to y. Two proper faces of B(y, d) which are
symmetric with respect to y will be called opposite faces of B(y, 9).

LEMMA 4 ([4], p. 115). Let x, ze Z(y, 6) and let v be the point symmetric
to z with respect to y. Then xyz holds if and only if segm {v, x} < Z(y, 9).

Since X (y, ) is the union of all proper faces of B(y, d), from part 3 of
Lemma 2 and from Lemma 4 we get

LeEMMA 5. Let x, ze X (y, 8). Then xyz holds if and only if x and z are
points of opposite faces of B(y, 8) [equivalently: of opposite maximal faces of
B(y, 9)].

By the ray with the initial point y passing through a point x different
from y we understand the set {y+A(x—y); 41>0)].

Lemma 6 ([4], p. 114). If xyz, then x, yz, for every x, lying on the ray
with the initial point y passing through x and for every z, lying on the ray with
the ini.ial point y passing through :z.

From Lemmas 5 and 6 we get

LEMMA 7. The relation xyz holds if and only if the rays with the initial
point y passing through x and z, respectively, intersect two opposite faces of
the ball B(y, 1) [equivalently: two opposite maximal faces of B(y, 1)].

LeMMmA 8. Any terminal subset of arbitrary set S = R" is extreme. In
particular, terminal points are extreme.

The lemma is true because yesegm {x, z} implies xyz.

3. Terminal subsets of convex sets in Minkowski-Banach spaces. In
Theorem 5 at the end of this paper we show that the only terminal subsets of
a convex set S = R" are unions of terminal faces of S. Theorems 2-4 facilitate
the verification which faces of S are terminal

THEOREM 2. A face F(S) of a convex set S is terminal if and only if any
two points of S, such that y is metrically between them, belong to F(S), i.. if
and only if '

(3) xyz.'does not hold for any xeS and zeS\F(S).

-
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Proof. If F,(S) is terminal in S then (3) follows immediately from (1)
and from ye F,(S).

Assume that F,(S) is not terminal in S. Due to (1) there exist points
x,€8, y,€F,(S) and z,€S\F,(S) such that x,y,z,. Since y,e€F,(S), in
virtue of the definition of F,(S), there exists ue S, such that yesegm |y, u;.
Obviously, ue F,(S). Moreover, y =(1—-a)u+ay,, where 0 <a < 1. Put
x=(1—-a)u+ax, and z =(1—-a)u+az,. Since d is induced by a norm and
since Xx; y; Z,, we have

d(x, y)+d(y, 2)
=d((l-u+ax,, 1 —a)u+ay,)+d(1 —)u+ay,, (1 —0)u+az,)

= d(ax,, ay,)+d(ay,, az,) = ad(x,, y,)+ad(y,, z,)
=o[d(xy, yy)+d(y, z1)] = ad(x,, z,)
=d(ax,, az,) =d((1-a)u+ax,, (1 —0)u+az,) = d(x, z).

Consequently, xyz.

From the convexity of S and from x,, z,, ueS we get x, zeS.

Since F,(S) is (by part 1 of Lemma 2) an extreme subset of S and
ue F,(S), zyeS\F,(S), zesegm{u, z,}, we have z¢ F,(S).

We have shown that xeS, zeS\F,(S) and xyz. Therefore (3) is not
satisfied.

THEOREM 3. A face F,(S) of a convex set S is terminal if and only if for
any two opposite faces F,, F, [equivalently: for any two opposite maximal
faces F,, F,] of any ball B(y,8) such that SNF,#@ we have
(S\Fy(s))sz =Q.

Proof. Assume that F,(S) is terminal in S. Let F,, F, be two opposite
faces of a ball B(y, d). Let xe SN F,. If there exists ze(S\F,(S))n F,, then
by Lemma 5 we have xyz, a contradiction with (3). Thus (S\F,(S))nF, = Q.

Now, assume F,(S) is not terminal in S. From (3) we get that there exist
veS and weS\F,(S) for which vyw. Take a sphere Z(y, d) with 0 <é
< min{d(y, v), d(y, w)}. Denote by x and z the common points of Z(y, J)
with segm {y, v} and segm {y, w}, respectively. Since S is convex, x, zeS.
From vyw and Lemma 6 we have xjz. Because F,(S) is extreme (comp. part
1 of Lemma 2), zesegm {y, w}, ye F,(S) and we S\ F,(S), we have z¢F (S).

Thus xeS and :zeS\F,(S). Moreover, from x,zeXZ(y,?d), xyz
and Lemma 5 it follows that x and z lie in some two maximal opposite
faces F,, F, of B(y, §). Consequently, the sets SN F, and (S\F,(S))nF,
are non-empty, which ends the proof.

Note that in Theorem 3 it is sufficient to consider only balls with-small
0 (with any 6 smaller than a fixed positive ¢).
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THEOREM 4. A face F,(S) of a convex set S is terminal if and only if the
plane aff F,(S) is terminal in the induced cone cone,S.

Proof. Assume F,(S) is not terminal in S. By (3) there exist xe S and
zeS\ F,(S) such that xyz. In virtue of part 2 of Lemma 1 from zeS and
z¢ F,(S) we get z¢afl F(S). Hence zecone, S\ aff F(S). Moreover, xecone, S
and yeaffF,(S). By (1) the plane aff F (S) is not terminal in cone,S.

Now, assume aff F,,(S) is not terminal in cone,S. By Lemma 3 we have
aff F,(S) = F,(cone,S). In virtue of (3) there exist x,econe,S and
z,econe, S\aff F (S) such that x,yz,. Consequently, there exist points
x,eSnsegmiy, x,} and z,eSnsegmiy,z;}. Obviously, z,¢affF(S).
Hence z,¢ F,(S). From x, yz, and Lemma 6 we get x, yz,. Moreover, x,€S
and z,eS\F,(S). Therefore (3) is not satisfied. Consequently, F,(S) is not
terminal in S.

The proof is complete.

Note that to verify with the help of Theorem 3 whether aff F,(S) is
terminal in cone,S it is sufficient to consider only one ball, for instance
B(y, 1).

Example 1. In R? with the norm ||(x,, x,)|| = |x,]+|x,| the points
(1, 0), (0, 1), (—1, 0), (0, —1) are only terminal points of the disk x?+x3 < 1.
This follows from the form of the balls of the space and from Theorems 3
and 4.

Example 2. Consider Minkowski-Banach space R*® with the unit ball
in the form of the convex hull of two circles: x?+x2 =1, x, = 0 and x3+ x?
=1, x; =0. From Theorem 3 it follows that the only terminal faces of the
cube |x; +x,5] <1, |x;+x3] < 1, |x;+x;3] <1 are two two-dimensional faces
parallel to the plane x; = 0, four one-dimensional faces perpendicular to the
plane x; =0 and all eight vertices of the cube.

THEOREM 5. A subset T of a convex set S = R" is terminal in S if and only
if T is the union of some terminal faces of S.

Proof. In virtue of part 1 of Theorem 1 any union of terminal faces of
S is a terminal subset of S. Thus it is sufficient to show that any terminal
subset T of S is the union of some terminal faces of S.

By Lemma 8 the set Tis an extreme subset of S. By part 2 of Lemma 2
the set Tis the union of the family #; of all maximal members of the family
of faces of S being subsets of T. Below we show that any face F,(S) from #
is terminal in S.

Suppose F,(S) is not terminal in S. By Theorem 2 there exist xe S and
zeS\F,(S) such ‘that xyz. Put z; =3y+3z Since yeF,(S), zeS\F,(S),
zyesegm iy, z} and F,(S) is extreme (see part 1 of Lemma 2), we have
z, ¢ F,(S). Because y, ze S and z, esegm {y, z}, we get that yeF, (S). From
part 3 of Lemma 1 we get the inclusion F,(S) F., (S). From z, ¢ F () it
follows that F,(S) is a proper subset of F, ().
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Now, if z; € T, then by part 1 of Lemma 2 we have F, (S) < T which,
in view of F,(S) & F. (S), contradicts F,(S)e #r. So z,¢ T From xyz, z,
=4y+4z and Lemma 6 we have xyz,. From xeS, ye T, z,e€S\ Tand (1) we
get that Tis not terminal in S. The contradiction shows that our supposition
is false. Thus F,(S) is terminal in S.
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