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1. Introduction. Let E be a Banach space and let 2 be an open and
bounded subset of [0, 1] x E. Given te[0, 1], we denote by

Q, ={xeE; (t, x)eQ}

the slice of Q2 at t. Let h: Q— E by any given map. Then by h,: Q,—» E we
denote the map x> h(t, x).

The following continuation principle is contained in the well-known paper
of Leray and Schauder [10]: '

THEOREME FONDAMENTAL ([10], p. 63). Let Q be as above and let k: Q - E

be a compact map such that
(i) x # k(t, x) for all (t, x)e0R, the boundary of Q,

(ii) there exists ty€[0, 1] such that the equation x = k(t,, x) has a finite
number of solutions x,, x,,...,X,;

(iii) the Leray—Schauder degree deg(I—k,,, Q,,, 0) is different from zero.

Then there exists a continuum of solutions of the equation x = k(t, x)
connecting Q, with Q,. .

The main purpose of this note is to extend this result in two directions.
First, we obtain the existence of continua of solutions for a class of maps wider
than that of compact perturbations of the identity, allowing also the parameter
space to be n-dimensional, n > 1. Secondly, we give some information on the
topological covering dimension of those continua of solutions.

To this aim let us recall first the definition of O-epi (zero-epi) maps
introduced in [4]. '

A continuous map f: U — F, defined on the closure U of an open bounded
subset U of E, taking values in a Banach space F, is said to be zero-epi (0-epi) if
the equation f (x) = h(x) is solvable in U whenever h: U F is compact and
h(x) = 0 for all xedU.

We list now the main properties of 0-epi maps, referring to [4] for further
results.
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1. HoMoToPY PROPERTY. Let H: U x [0, 1]— F be a continuous map such
that

@ H(,)—H(,0) is compact,;

(ii) H(x,t)# 0 for all xedU and all te[O0, 1].

Then either H(-,0) and H(-, 1) are both 0-epi or both not 0-epi.

2. LOCALIZATION PROPERTY. Let f: U— F be 0-epi. Assume that

f7'0)cvecu.

Then the restriction f|, is 0-epi.
An important class of 0-epi maps is given by the following:

Let k: U—E be a compact map. Assume that the Leray—-Schauder degree
deg(I—k, U, 0) is defined and different from zero. Then I—k is O-epi.

We remark that the converse need not be true even in the finite
dimensional case (see [4]).

The following example shows that the Théoréme fondamental of Leray
and Schauder does not admit a direct extension to the context of 0-epi maps.

ExaMPLE 1.1. Let Q be the open subset of [0, 1] x [—2, 2] shaded in Fig.
1 and let f: Q — R be the map whose graph is shown in Fig. 2. The set of zeroes
of f, indicated in Fig. 1 with fat line, does not contain any continuum joining

fo1(0) with £11(0).
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Some comments and remarks regarding the Théoréme fondamental and
the above example are in order.

We mention first the fact that the result of Leray and Schauder holds if
assumption (ii) is removed. This has been shown by Browder [2].
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Further, notice that assumptions (i) and (ii) of the Théoréme fondamental
imply, by the homotopy property of the degree, that

deg(I—k,, 2,,0) #0 for all te[0, 1].

Now, Example 1.1 is such that f;: Q,— F is 0-epi for any te[0, 1]. Therefore,
assumptions of this type are not sufficient to ensure the existence of
a continuum like that obtained in the Théoréme fondamental.

Finally, observe that the same assumptions (i) and (iii) imply, via, e.g., the
Leray—Schauder reduction lemma for the degree, that

deg(G, 2,0) #0,
where -
@ ={t xeR0<t <1}
and G: @ >R xE is the map &eﬁned by
G(t, x) = (t—tq, x—k(t, x)).

These last are the type of assumptions we are going to work with in order to
obtain an extension of the Théoréme fondamental (see Theorem 2.1 below).

‘We add in passing that with a slight modification of Example 1.1 we can
see that the generalized homotopy principle does not hold in the general
context of 0-epi maps. To show this it suffices to modify the domain by filling
up the upper strip. This way one joins the 0-epi map f,, with f, which is not
0-epi.

2. Definitions, notation and preliminary results. Let I" = [—1, 1] be the
unit cube in R" and let U c I"x E be open and bounded. Let f: U—F be
proper and such that 0¢ f(0,U), where 0,U stands for the boundary of
U relative to I"x E, and I" is the interior of I". Consider the open subset

V =Un("xE)
of R*"xE and define the map G: V- R"x F by
G(4, x) = (n(4, x), f (4, x)),

where n: R” x E — R" is the natural projection. Notice that G(4, x) # (0, 0) for
all (A, x)edV since

Vc(Unn t@M)uo,U.

We will assume that G is 0-epi (this last assumption means that f is
zero-regularizable by n in the sense of Furi and Pera [5)). '

The following result shows that assumptions of the above type are quite
natural in order to obtain an extension of the Théoréme fondamental to the
context of 0-epi maps (recall Example 1.1).
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PROPOSITION 2.1. Let f and G be as above. Then the map f,: U, — F defined
by f,(x) = f(4, x) is O-epi for any Ael". Moreover, if A edI", then the set

{(AO’ x)e 17: f('lo’ x) = 0}
is nonempty.

Proof. Let A, € I" be given (notice that for such 1, we have U, = V, ). We
shall show first that the map (n—A4,, f) is 0-epi. To this aim consider the
homotopy

H: Vx[0,1]->R"xF
defined by
H(4, x; t) = (n(A, x)—tdy, f(4, x)).

Clearly, H(-, -; )— H(, -; 0) is compact and H(4, x; t) # O for all (4, x)edV and
all te[0, 1]. Hence the map

H('a ‘s l) = (1!(‘, ')_)‘0’ f(a ))
is 0-epi. We prove now that f; is 0-epi. Let h: U, — F be a continuous and
compact map such that h(x) = 0 for all xedU,,. We have to show that the

equation f; (x) = h(x) is solvable in U,,. Consider the continuous and compact
map

h: 0,,00V—>F
defined by
_[h(x) if xeU,,
hd, x) = {0 if (4, x)€dV.

Let h: V7 — F be any continuous and compact extension of & to V. The equation
(m(4, x)— 4o, f(4, x)—h(4, x)) = (0, 0)

is solvable in V since the map h vanishes on dV. This implies that for some
xo€U,, we have

Jao(Xo) = h(4g, xo) = h(x,)
since h agrees with h.on U,,. This shows that f, is 0-epi.
Finally, let A,edl". If -the set

K= {(Aw x)€ v S Ao, x) = 0}
is empty, then the homotopy H: ¥ x [0, 1] - R" x F defined above is admiss-
ible. In particular, the map (nm—4,, f) is 0-epi, and hence f(4,, x) = 0 admits
a solution, which contradicts the emptiness of the set K.

Remark 2.1. Regarding the assumptions of Proposition 2.1 notice that
even if f;, = f for all A€[0, 1] and Q = [0, 1] x U, where U is an open and
bounded subset of E, then the map (4, f) need not be 0-epi. To construct such
an example one can use the Hopf map as it has been done in [8].
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In order to state our main result we need some preliminaries.

DEFINITION 2.1 (see, e.g., [3]). A normal topological space X has covering
dimension equal to n provided that n is the smallest integer with the property
that, whenever # is an open covering of X, there exists a refinement %’ of #,
which also covers X, and no more than n+ 1 members of ' have nonempty
intersection.

DEFINITION 2.2 (see [1]). A continuous map g: X —»I" is called
A-H-essential if any map h: X — I" satisfying g(x) = h(x) for all xeg~!(I") is
onto, ie., h(X)=I".

A-H-essential maps play an important réle in describing the topological
structure of a space. In this context we recall the following two results:

PROPOSITION 2.2 (see [1]). A compact metrizable space X has covering
dimension at least n if and only if there exists an A—H-essential map of X onto I".

In fact, Aleksandrov proved Proposition 2.2 for the small inductive
dimension, ind X, of X. But, in the case of metrizable spaces, the covering
dimension of X and indX coincide (cf, e.g., [3]).

DEFINITION 2.3 (see [9]). A continuous map g: X —I" is called weakly
confluent if each continuum C c I" has the property that some component of
g~ !(C) is mapped onto C by g.

PROPOSITION 2.3 (see [7]). If g: X — I" is an A-—H-essential map of a compact
Hausdorff space X onto I", then g is weakly confluent.

Finally, we say that a set S < I"xX well-covers I" if the projection
n: S—I" is weakly confluent.

The following is the main result of this note:

THEOREM 2.1. Let U < I"x E be open and bounded and let f: U—F be
proper. Assume that the following holds:

(1) 0¢f(0,V);

(ii) the map G: V - R"x F defined by

G4, x) = (n(4, x), f(A,x)) for A, x)eV =Una"}(I"
is 0-epi.
Then there exists a continuum X of S = f ~'(0) with covering dimension at
least n. Moreover, X well-covers I".

Theorem 2.1 will be proved by means of the following lemmata.
LEMMA 2.1. The map n: S—I" is A-H-essential.
Proof. Observe first that, by Proposition 2.1, we have n(S) = I". We put
S =Snn1oI.
Let g: S —I" be a continuous map such that g(4, x) = n(4, x) for all (4, x)e S
and g(S) & I". Let r: g(S)— 0I" be a retraction of g(S) onto 4I". Then the map

rog: S—oI"
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is such that
rog(A, x) = g(4, x) =n(4, x) for all (4, x)eS.

Since JI" is an ANR, rog can be extended to a map § defined on an open
neighbourhood W of S such that W c V. By the localization property of 0-epi
maps, the restriction of the map G = (n, f) to W is 0-epi. Consider the
homotopy

H: Wx[0, 1]>R*x F
defined by
H(A, x; 1) = (1 =)7(A, x)+td(A, %), [ (4, X)).
Let us show that H is admissible. In fact, the difference
H(, 5 )—H(, +; 0) = (—tn(, )+1t4(, ), 0)

is compact for any t€[0, 1] and uniformly continuous in ¢t with respect to
bounded subsets of W. Moreover, if

(A, x)edW and H(, x;1t)= (0, 0) for some te[0, 1],
then f(Z, X) = 0, which is impossible unless 1edl", ie., (1, )€ S, but then
A=Dn, D+ (T, %) =T, %) #0
since § agrees with = on S. Thus,
H(, 5 1) =(GC, ), f¢,)
is 0-epi. On the other hand, by the construction of § we have

@ 70,0 =9.

This contradicts the fact that (g, f) is 0-epi. Hence n is A—H-essential on S.
Remark 2.2. By Proposition 2.2 the covering dimension of S is at least n.
Remark 2.3. From the properness of f it follows that S is compact, and

thus, by Proposition 2.3, the restriction =g is weakly confluent. In particular,

there exists a connected subset C of S such that n(C) = I". The existence of such

a set C can be obtained also by using the covering results due to Furi and

Pera [6].

LEMMA 2.2. There exists a connected subset X of S such that the restriction
of m to X is A—H-essential.
Proof. Let € be the family of all closed subsets C of S for which =|. is

A-H-essential. By Lemma 2.1 we have € # O, since Se¥.

Consider in € the partial ordering induced by inclusion. Now, let ¢’ be

a chain in ¥. We shall show that

I=\cC

Ce¥€¢’
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is a lower bound for ¢’ (notice that ¥ # @ since S is compact). To this aim let
us show first that n(Z) = I". In fact, assume that n(Z) & I" and let r: n(Z) - oI"
be a retraction of n(X) onto OI". Then the map ron: 2 —dI" is such that

ron(d, x) = n(d, x) -if (1, x)eX =2Zna"1@oI).
Let g: ZUS—0I" be a continuous map defined by

1) = ron(4,x) if (A4, x)eZ,
IhX =% if (4, x)es.

Since JI" is an ANR, the map g can be extended to a continuous map
G: W—oI", where W is an open neighbourhood of X u S. Moreover, by the
compactness of S and the definition of X there exists Ce ¢’ such that C = W.
Furthermore, since C < §, by the construction of § we have §|. = 7|, and §l¢
takes values on OI". This contradicts the fact that =|. is A-H-essential.
Therefore, n(Z) = I".

Now, assume that X ¢ ¥, i.e., n|; is A-H-inessential. This means that there
exists a continuous map g: ¥ —1I" such that

gg=mnly and g2)gI"

Let r: g(2)—>oI" be.a retraction of .g(Z) onto 0I". Then the map rog: X - dI"
agrees with = on 2. Let g,: 2 US—0I" be a continuous map defined by

rog(4, x) if (4, x)eZ,
n(4, x) if (4, x)€S.

Since dI" is an ANR, there exist an open neighbourhood W of Zu S and
a continuous map §: W — dI" which extends g, . Then, as above, we can find an
element C of €’ such that C <« W and =|; is A-H-essential. But §|.: C - dI"
agrees on C with n. This is a contradiction, and therefore £e%. By Zorn’s
Lemma there exists a minimal element, still denoted by X, belonging to .

The remainder of the proof of Lemma 2.2 will be devoted to show that X is
connected. Assume that X = A4, UA,, where 4, and A4, are closed and
satisfying A, N A, = @. We shall show that either =|,, or n|,, is A-H-essential.
Indeed, suppose that =|,, i =1, 2, are A-H-inessential. Then there exist
g;: A;—I" such that

gi(Ai) Eé " and gil,q, = ﬂl,“, i=1,2.

Let r;: g;(4)—-aoI", i=1, 2, be continuous retractions. Consider the maps
r,og;: A;—0I", i =1, 2. Then

gl()*’ x) = {

rogila, =mly, i=1,2.
Let g: 2 —dI" be a continuous map defined by

r,og,(4,x) if (4, x)eA,,

g(4, x) = {rzogz(i’ x) if (4, x)e 4,.
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Since ¥ = A, UA,, we have g|; = n;. This contradicts the fact that =), is
A-H-essential, since g is not onto. Therefore, either nj,, or n|,, is A-H-essential.
The minimality of X yields A, = Z. Thus 4, =@.

Proof of Theorem 2.1. Apply Propositions 2.2 and 2.3 to the minimal
connected set 2 obtained in Lemma 2.2.

Remark 24. In the context of compact perturbations of the identity,
Theorem 2.1 is contained in [11].
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