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1. Introduction. Erdos et al. [1] proved the following:

For any sequence {A;,1 < i < n} of n events in an arbitrary probability
space (S, o, P) such that P(A;A;) < a® for all ©,j (¢ #j) the inequality

n

(1) 2 (P(4)—a) <&
i=1
holds, where >
_1—a  (na—r)((n—1)a—r7)
I 2 ’

and r is the largest inleger satisfying
r(r—1) < [n(n—1)a?],
[x] denoting the integral part of x.
They also establish that ¢ is of order 1/n.
For a similar problem, Zubrzycki [3] shows that if 4,, 4,,..., 4,

are exchangeable events of second order,i.e.,P(4;) =v, (*+ =1,2,...,n),

0y (1 —,) (nvy — [n0,]) (1 — 0o, + [0,])
n—1 n(n—1) |

In the above-mentioned papers the authors give examples where
equality is attained in (1) and (2). The results of [1] are equivalent to
those obtained from exchangeable events of second order, although the
authors give the impression that this is not the case.

In the present paper we derive inequalities (1) and (2) using linear
programming approach and, furthermore, we study the more general
case of non-exchangeable events. We improve inequality (1) and we pres-
ent examples where our inequalities are sharper than (1). Our approach
is a consequence of a result of Rényi [2], who proved the following theorem:

(2) vy = V] —
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Let F; = F;(Ayy Agy...,4,) (j =1,2,...,N) be arbitrary Boolean
functions of the n variable events A,, A,, ..., A,. The linear inequality

N
D GP(F)>0
7 j=1

(where ¢y, Cyy ..., Cx are real constants) is valid in every probability space if
it i8 valid in the trivial probability space S,(1).

The trivial probability space consists only of events having proba-
bility zero or one.

In this paper we also prove (Theorem 1), using indicator random va-
riables, a result similar to the theorem of Rényi, which is then utilized
to generalize the results of [1] and [2].

2. Main results.

THEOREM 1. Let F; = F;(A,, Ay,...,A,) (j=1,2,...,N) be ar-
bitrary Boolean functions of the variable events A,, A,, ..., A,. Then

N
(i) chlj(w) =0 for every we 8
i=1
if and only if

N
(i) Y ¢;P(F;)>0 in any probability space (8, o, P),
j=1
where cj' are real constants and I;(w) = I, denotes the indicator random
variable of F; (j =1,2,..., N).
Proof. We can assume that ¥, #9,F, #0,...,Fy #0. Let
E,EB,,...,E, be all the non-null atoms of 4,, 4,,...,4,,r<2" and

d‘ = 2 Cj.
{(J:E;CF))
Then our theorem is equivalent to:
r
(i) D d;Ig () >0 for all wes

j=1

if and only if
r
(ii") Zd,P(Ej) = 0 in every probability space.
j=1
The necessity is proved by taking expectations.
To prove the sufficiency consider the probability law

’ _J1 for j = jo,
P(Ej) B {0 fOI' j -:'éjl)’
where 1 <j <.
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Then d; -1>0 or d; >0, and this happens for all j, =1,2,...,r
Hence we have (i').
It should be noted that if (i) holds, then so does (ii), however, to go

from (ii) to (i) we should make the basic assumption that (ii) holds in every
probability space. It is evident from the proof above that
N
(3) D eIjw) =0 forall wes
j=1

if and only if

N
(4) ZcfP(FJ') = 0 in every probability space.
j=1

The results above will be used in order to establish some inequalities
generalizing the results of [1] and [2]. Let us use the notation: P, = P(A,)
and P; =P(4;4;) 1<i<j<n).

THEOREM 2. For any events A, A,, ..., A,, the inequalities

n

Ol 1 r*+1
(5) ZP~;<F2P&+ 5 !

31=1 1<)

n

K* (k" +1)

6 k* P,— — K P
(6) Z ; : ; p

are valid in any probability space, where r* is the largest integer satisfying

r*(r* —1) < [2219,.,], and k* = [Z”'P,-].
i<j i=1

Proof. Assume that the inequality

(7) DP< YeyPyto
i=1 i<j
is valid in any probability space. Then by Theorem 1 we have
n
(8) D L(w) < Y oy (w)(w)+e  for all we S,
i=1 i<J

where I,;(w) is the indicator of the event 4; (¢ =1, 2, ..., n).
Relation (8) is certainly true if

(9) r<< 2 ¢y+ec¢ forallr=0,1,...,n,
o

where J, is a subset of {1, 2, ..., n} containing r integers.
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To see this, let us take w € 8. Then w belongs to exactly r of the
events A4,, A4,,..., 4, for some r =0,1,...,n, and hence (8) holds
for every w € 8. Of course, for a particular collection of events 4,, 4,, ...

., 4, some of relations (9) might not be needed; in this case we have
fewer inequality constraints and the bounds given in (5) and (6) could be
improved as in Corollary 1.

Our problem is to minimize the right-hand side of (7) subject to (9).
Consider the case where ¢; = ¢, for all 1 <% < j<n. Then we have to
minimize

(10) 0 D)) Py+e
i<j
subjeet to
r(r—1)
(11) r<{——ec+e¢ (r=1,2,...,n).

2
Relations (11) define a convex polygon with vertices

1 r+1
01=-;-, c = 5 (r=1,2,...,n-1),

as it is easily seen from the (c,, ¢)-plane. The value of (10) at these ver-

tices is
r+1 :
z, __2 + r=1,2,...,n—1).

i<j

Observe that Z, < Z,,, for > r* and Z,_, > Z, for r < r*, whence
we obtain (5).
To obtain (6) we argue similarly maximizing

dle,+d
i=1

subject to
r(r—1)

=>rd;+d (r=20,1,...,n).

The vertices here are d, = k,d = —k(k+1)/2, with k* = [ZP,] for
the optimal vertex.

COROLLARY 1. If every w € 8 belongs either to r, or to ry of the events
A, A4, ..., 4,, then

n

w Sne e S

i=1 i<j
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Proof. For the given events the relations

(13) r = (;1) &+¢, Tp= (;’) ¢+

and

(14) ZIi(w) = OIZI,(w)I,(w)+o for every we S
i=1 i<j

are equivalent. From (13) we get

2 7.7

T 4 =)
1‘1-|-1'2—1 1'1+1'2—1
and by taking expectations in (14) we obtain (12).

n

01=

An obvious lower bound for } P, is given by

i=1

(15) (n —1)2P >2 ) Py,

i=1 i<j

COROLLARY 2. In any probability space we have

ZP +Pé ZPif‘l' r*+1

i<j

where A denotes the complement of A.

For the proof we have to minimize the same linear function given
in (7) subject to the same restrictions (9).

In the case of exchangeable events of second order, (5), (6) and (15)
take the forms
-1 o0t r*+1 - 2k*v,  k*(k*41)

n
16) », < — ~ =
(16) v, < opx 02 on Vg = m—1 nn—1) ’ ¥y 2 Vg

where 7* is the largest integer satisfying
= r*(r*—1) < [n(n—1)v,],

and ¥* = [nv,]. For large n we have

-1 *41 1 — -
'vlgn f,,2_|_7'+ =1/Z+0(7)—>l/'02 as n —> oo,

2r* 2n

2k*v,  K*(k*+1). 1
vy > 'n—ll ~ am=D) =v§+0(-’;&-).—>v§ as n — oo,

and v, > v, for all n.
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We now construct » events A,, 4,,..., 4, such that every we §
belongs either to r; or to r, of them (r, # r,). For this

(i) take any m events B;, where

n n . s
71 7o i=1

(ii) arrange in the lexicographical order all combinations of r, and
all combinations of r, of different integers among 1, 2,...,n;

(iii) define the event 4, (k =1,2,...,n) so that it contains B,
the i-th combination (word) contains the integer k.

From this construction we see that:

(a) every B, belongs to all the events 4, for which the index &k is
contained in the ¢-th combination, i.e., every B; is contained either in
r, orin r, of the 4, (¥ =1,2,...,n);

(b) every A, contains as many events B; as the number of different
combinations (words) containing the index F, i.e.,

n—1 n—1
("1 —1) +(Tz —1) ’
(c) every pair of events A4,, A, has in common as many events B,
as the number of combinations (words) containing the indices k and p, i.e.

e

If we now assign to each B] the probability ¢; such that

if

then equality in (12) is attained, since

n

ZP(A{) = 7,0, +7:Q3, ZP(A‘AJ') = (;1) @it (;2 Qs

i=1 1<j

where
@, = P(B,)+ ... +P(B;.), jt = (:.?,1)1 and @, =1-0,.

The following example will clarify the situation.

Example 1. Take n = 3,r; = 1, r, = 2. Then all possible combina-
tions (words) of {1, 2, 3} of length 1 and 2 are: (1),(1,2),(1,3),(2),(2,3),(3).
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Thus
A, — ByUB,UB,, A, = B,UB,UB,, A, = B,UB,UB,.
If we set
P(B,) = 0.35, P(B,) —0.10, P(B,) =0.05, P(B,) =0.15,

P(B;) = 0.20, P(Bg) =0.15,
we get ‘
P(4,) =050, P4, =045, P(4,;) =0.40,

P(A4,4,) =010, P(A4,4,) =0.05, P(4,4,) =0.20

and

3
D'P(A,) =135, D'P(4;4) =035, 7 =1,r,=2.
i=1

i<j

By (5) or (12) we have

ire1 (2-0.35+2) = 1.35.

Also equality in (6) is attained.

In the proof of Theorem 2, we considered only the special case where
¢; =¢ (1<i<j<n)and the derived bounds are certainly inferior
to those resulting from the unrestricted c¢;. Although we cannot give
the best bounds in analytical form, nevertheless in the non-exchangeable
case we can improve the bound given by (5).

For exchangeable events of second order, inequalities (5), (6) and (15)
cannot be improved using the method of Theorem 1, but if we drop the
assumption of exchangeability, then some progress can be made.

To do this we split the set {1, 2, ..., n} into two disjoint sets J, and
J; having s and ¢t = n — s integers, respectively, and put ¢; = ¢, if 4, j € J,,
¢; =0 if i,jed;, 0y =c¢; if 1€J,,jed;. Then (9) takes the form

ry(r,—1) r2(rs—1)

(17 rtrss ————o+ 2

B Cat71173C3+C,

O0<r, <8, 0 r;<n—s.

The point ¢; =0,¢; =0,¢; = 1/¢, ¢ = max(s,n—s) is an interior
point or a vertex of the convex polyhedron defined by (17).
Now from (7) we obtain

n

1
DIP< =, +e,

f=1
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where Q, = YP,; with ¢ed,, jedJ;, ¢ =max(s,n—s). Hence, taking
all possible 8 =1,2,...,n—1, we finally have
n ‘ 1
(18) 21—‘; < min (—O-Q,+c).
8

{=1

In the sequel we give an algorithm of how to determine, for given s,
the choice of J, so that @, is minimized, but first we present an example
in which (18) gives a better bound than (5) and although the example is
trivial it demonstrates our purpose.

Example 2. Take in the sample space S the events D,, D,, Dy
to be mutually disjoint and

DyvD,uD; =8 with P(D,) =030, P(D,) =0.25, P(D,;) = 0.45.
Define now the events A,, 4,,A4;, 4, as follows:

Al = Az = DIU'DZ alnd Aa = A‘ = ‘DIU'DS'
Then
Pl =P2=0.55, PS =.P‘ =0-75’ P12=0-55,

P13 =P14=P23 =.P24=O-30, Ps‘=0o75.
Thus

i‘P, =2.60, D P, =2.50.

=1 i<j,

The upper bound of (5) is 2.50/2 +3/2 = 2.75 (since 7* = 2) and that
of (18) is 1.20/2 42 = 2.60 for the choice J, = {1, 2}, and this last bound
equals the actual value of ) P, = 2.60.

We now describe the algorithm for finding the subset J,, for given s,
so that @, is minimized:

(i) For fixed s and ¢{ = n—s take any two disjoint subsets J, and
J; such that J,UJd; = {1,2,...,n}.
(ii) Find the point 4* € J, for which

Ry = ) Puj— D Py,

jed ’
jiv iely

is maximized (ties are broken arbitrarily).
(iii) Find the point j* € J; for which

) R, = ZP""‘—ZP‘P

teJg ic Jé
t#j*

is minimized (ties are broken arbitrarily).
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(iv) If R, < R,, then the point i* goes to J; and j* goes to J,.
(v) If R, > R,, then for the subdivision J,,J; the value of @, is
minimized.

Having found the minimal @, for s =1, 2,...,2—1 we now proceed
to find

1
min(? Q,+c) where ¢ = max(s,n—s).
8

To verify that the algorithm above is valid, we take the two subsets
J, and J; and determine how the value of @, changes by transferring the
point ¢* into J; and the point j* into J,. This procedure leads us to the
algorithm above.

In what follows we derive another upper bound for Z'Pi For this we
i=1
divide the set {1,2,...,n} into three mutually exclusive subsets J,,

J,and J, having s, t and = n — s —t integers, respectively, with s < [n/2],
t<[n/2] and » < [n/2]. If we set ¢;; = 0 for ¢,jeJ, or for i,j eJ,or
for i,j€dy,, ¢; =¢, for ted,, jed, ¢; =c, for ied,, jed,, and
¢; =¢3 for i ed,,jed,, then (9) takes the form
(19) r1+7e+ 73 << 017172+ CoTi 75+ 67573+
for all 0<r; <8,0<r, <t,0<r;< u.
The values

n—2u o — n—2t o — n—28 ond ¢ — n
2st 1 % 2sy 2T otu 2
satisfy (19), as it can be seen from the relation
(7, —8)(rg— 1)+ ca(ry — 8) (rs —u) +03(7'z—t)(7'3_“) =0

Hence, another upper bound is

n—2u n —21 n—2s n
20 2 P, < Q,,+ —— Q -~ 4 —
(20) ,,,, 2st %t s otu Q"”) 2’

01=

where Q,, =P, for ied,jed, @, =P, for i ed,,jed,,
=Y P, foried,jed,, and s+t+u =n.

In practice it is a challenging computational problem to find the
minimum of the right-hand side of inequality (20), however, we can de-
velop an algorithm similar to the one developed before.

We present now an example where the bound given by (20) is better
than that of (5) and (18).

Example 3. Take n =5 and define the events A4,, 4,, 4,, 4, a8
in Example 2. Further, put

A5 = As = A4 = .DIU.Da.
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We have then

5
D' P(4,) =335, ZP(AfA,) = 4.60.

i=1 i<j

The bounds given by (5), (18) and (20) are 3.533, 3.60 and 3.475, re-
spectively, where to evaluate (18) we took J, = {Al,Ag} Jy = {Aa,A“ A}
and to evaluate (20) we took J, = {4, 4A,},J; = {4,, 4.}, J, = {4;}.

COROLLARY 3. If we divide the set J = 1,2, ..., n into m disjoint sub-
sets Jy,dgy ..oy d,, having m;, n,,...,m, elements, respectively, and if
QS,‘ == ZP” fOT ’l; EJs, j EJt (1 < 3,t<m), then

(21) D Pi< min d(m_l)ZQsH-

where d = Max (Mg, Ngy «ouy Ny).
Proof.If wesetc; =0fori,jed,(s =1,2,...,m),¢; =1/d(m—-1),
¢ =dm/2, we see that (9) is satisfied for all r = 1, 2,...,m, since

1
S E . —d)(r.—d) =0 0 r,<n,.

Finally, as a consequence of Corollary 2, we have
COROLLARY 4. If J,, J4, ..., J,, are digjoint subsets of J = {1, 2, ..., n}

such that J,VJ,U ... Ud, =J, then
st
(2 3

(22) i’Pﬁ il’(g 4)<,
=1 8=1 8

where Q,, = D' P, ,i,jedy,i<j, and r; is the largest integer satisfying
* , %k
7y (rs —1) 2Qs,a
Proof. Since

U4, =Q(g 4) and p(gAi)gzm’(g 4)),

s=1

.....

the result follows from Corollary 2.

The practical difficulty in evaluating the right-hand side of (21)
or (22) is a demanding computational problem. However, we can start
with m = 2, follow a procedure similar to the one already described for
evaluating (18), and then proceed to m = 3, 4, ... as long as the right-hand
side of (21) or (22) decreases.

COROLLARY 5. If we can divide the set J = {1, 2, ..., n} into two disjoint
subsets J, and Jy with 8 and n—s8 elements, respectively (s < [n/2]) and
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(@) if Py < af for all i ed,,j€d,, then
(23) NP <n—s(l—a);
i=1

(b) if Py; < af for all i,jed, and i,j € J,, then

n

1 1
24) DPe< (n=Dau 140 (5) o)

Proof. (a) It is enough to put P;; < o in (18).
(b) We have

Qn =

and, for large m,,

8(s—1)a; _ (n—8)(n—s—1)a
T’ Q22 —_ 9

%

l—al 1 1 1 1—(11 (1
= o|— d 5 = 1-— o{=]l.
rs s al+ 2 + (/ns) o 1‘: nsal [ 2naa1 + 'n’g )]

Hence

Q rs+1 l1—a 1

r + o = et > L +o o)
where n, = s and n, = n —s, which implies (24).

Of course, we can extend Corollary 5 along the lines of (21) and (22).

It should be noticed that for the results of Corollary 5 we do not assume
P, < a? for all ¢ = j but that P; < a} for some ¢, j. If P; < a? for all
t #j, then we get

n 1 1

ZP,- < na+—(l—a)—|—0(—)

P 2 n

given in [1], and this bound is worse than (23) or (24) if a, is small when
compared to a.
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