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All graphs considered here* are finite, undirected, and without loops
or multiple lines. Let S(n) denote an n-star graph which has n 1 points,
where one point s has degree deg 8 = n and every other point has degree
one. For n > 2, suppose we permit the lines of S(n) to expand such that
the growth of a line is stopped only when its endpoint of degree one meets
the interior of any line, or meets any other point, and the resulting sim-
plicial complex is realized by a graph @. Then we say that ¢ is an expanding
n-star. It may be emphasized that in the expanding process, the interior
of a line of S(n) can only be met by an endpoint. For given =, let E(n)
denote the collection of all non-homeomorphic graphs obtained by expand-
ing 8(n). We note that it is possible for a graph to belong to both E(n)
and E(m) for n # m.

In the literature we find references to E(2) in seemingly diverse
situations. Thus, Doyle [3] proved that every monotone union of 1-cells
must be homeomorphic to one of the graphs in Fig. 1. Also, five of these
configurations represent the termination of a self-avoiding walk discussed
by Kesten [5]. More recently, Lelek and McAuley [7] proved that if K
is a locally connected and locally compact metric space which is a one-
-to-one continuous image of the line, then K is homeomorphic to one of
the graphs (a) through (e) of Fig. 1. In fact, these very considerations
led to the introduction of the concept of expanding stars in [4], where
some of the preliminary results were obtained.

Alternatively, a graph G is an expanding n-star, n > 2, if G can be

written as | §;(n), where 8;(n) is an n-star, S;(n) is homeomorphic to
i=1

an n-star for ¢ > 2, and Sy(n) = 8;,,(n) for ¢ =1, 2, ... It will be conve-
nient to call the point 8 in 8,(n), with deg 8 = n, a source of the expanding
n-star G. Obviously, an expanding star graph has not necessarily a unique
source. So, if G ¢ E(n), then there exists a continuous mapping f: S(n) > @

* Research partially supported by National Science Foundation Grant GP
9435. .



64 S. F. KAPOOR

which is one-to-one except perhaps at the endpoints of S(n). Using this,
or otherwise, it is easy to show that E(2) consists of the six graphs of
Fig. 1. By a direct method, it was possible to obtain in [4] all the 30
elements of F(3), and these are reproduced in Fig. 2.
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Fig. 1. The collection F(2)

For a graph G, let D (k) represent the number of points of G whose
degree is not less than k. As usual, [#] denotes the greatest integer not
greater than .
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Fig. 2. The collection E(3)

THEOREM 1. If Ge E(n), then D(k)<1+4[n/(k—2)] for 3<k<2n
and n > 3.

Proof. Let s be a source of G. Then n < deg s < 2n. Starting from
the n-star S(n), the maximum number of points in ¢ with degree not
less than 3 is obtained, if, for example, the endpoint ¢ of every line I in
S(n) meets 1 in its interior. Thus, D(3) <14 [n/1]. In general, k —2 of
the n endpoints of S(n) have to meet on the interior of a line to produce
a point of degree k in @. Since the » endpoints can be paired to produce
at most [n/(k—2)] points with degree k, we have the desired result.

The preceding theorem shows that we cannot have too many points
of high degree in an expanding n-star G. For instance, if n+3 < k < 2#,
then D(k)<1l; and ¥ =n+1 or n+2, or k =n > 5 implies D(k) < 2.
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In fact, all members of E(n) are locally euclidean everywhere except
at 41 points at most. On the other hand, Theorem 9 shows that the
scarcity of points of high degree is compensated by the existence of points
of small degree. Also, if v is any point of an expanding n-star @, then
1 < degv < 2n; and if degv > n-+2, then v must be a unique source of
G. Next, we directly obtain the following result from Theorem 1:

COROLLARY 2. If a graph G is an expanding n-star, n > 3, and A4(G)
i8 the maximum degree of the points of G, then (k—2)(D (k) —1) <n< 4(G)
Jor 3< k< 2n.

Using the current terminology of graph theory, let K, denote the
complete graph on p points where each points is adjacent to every other
point; and let K, , be the complete bipartite graph whose point set can
be partitioned into subsets ¥V, and V, having m and n elements, respec-
tively, and where distinct points % and v are adjacent if and only if ue V,,
ve V; and ¢ # j. Previous remarks and results show that graphs homeo-
morphie to K,, K;, K,, K, , and K,, are each homeomorphic to some
expanding ¢-star for suitable choices of ?.

THEOREM 3. The graphs K, and K, are not expanding n-stars for
any n = 2.

Proof. Expanding n-stars are completely classified for » = 2 and
3 in Figs. 1 and 2, respectively, and these do not contain K; or K,,.
Consequently, K, , fails to be an expanding n-star, since n = 2 or 3 are
the only possibilities in this case. For K, then, n = 4 is the only candidate,
and 4(G@) = k = 4 yields a contradiction to the conclusion of Corollary 2.

Next, we will show that no expanding n-star graph can contain
subgraphs homeomorphic to K; or K,;;, and as in Kuratowski [6],
this will prove that every graph in E(n) is planar. In order to do this,
we obtain a much stronger result, namely, if Ge E(n) and H is any sub-
graph of G which does not contain a source of @, then all subgraphs of H
are excluded from being homeomorphic to K, or K,;, and following
Chartrand and Harary [2], this proves that H is outerplanar. To this
end we proceed as follows.

In S(n), let s be the source, and v,, v,, ..., v, — the endpoints of the
n-lines. Let S(») expand to yield a graph @G, with the line sv; of S(n) being
transformed into a subgraph P; of G, where P, is a path or a cycle. Denote
the p; > 0 points on P; (other than s and v;) by u,, s, ..., %, and note
that together with s and v;, these are the only points where the lines
of S(n) meet P; with their endpoints. In S(n), it is convenient to assign
an orientation s to v; for each 4, indicated s - v;, and let this induce the
natural orientations on the lines su,, u,u,, ..., 4, ; of P; (see Fig. 3).
In what follows, an orientation will always refer to that due to a particular
source which will be clear from the context.
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Fig. 3. An orientation

LEMMA 4. Let s be a source of an expanding star G, and let v be any
point of G other than 8. Then at most one of the lines incident with v can have
an orientation leading away from v.

Proof. Assuming to the contrary, at least two of the expanding
lines of S(n) will have their interiors meeting at v.

LeMMA 5. For t > 3, let a,, a,, ..., a; be the points of & path P in an
expanding n-star G. If a source 8 of G does not belong to P, and if the line
a;_,a; has the orientation a,_, — a, due to 8, then the lines a;a; , have an
orientation a;—~a;, , for ¢ =1,2,...,1—2.

Proof. Lemma 4 can be successively applied to the points a,_,,
@;_,, ..., &, to obtain the desired result (see Fig. 4).

a a a; a4+ at-2  Qt— at

Fig. 4. An induced orientation on a path

A graph @ is said to be outerplanar if it can be embedded in the plane
so that every point of G lies on the exterior region. Chartrand and Harary
[2] have characterized outerplanar graphs as those graphs which fail
to contain subgraphs homeomorphic from K, or K, ,.

THEOREM 6. Let G be an expanding n-star graph with a source s. Let
H be any subgraph of G not containing s. Then H is outerplanar.

Proof. According to the characterization of outerplanar graphs
stated above, we have to show that no subgraph of H is homeomorphic
to K, or K, ,. Assume to the contrary. Then, it is easy to see that there
exists a subgraph A of H which is homeomorphic to the graph K,—«
(see Fig. 5).

Let a and b be the points of A with degree 3, every other point having
degree 2. Consider the orientation in A due to the given source s. By

e a ,é_ﬁ‘;, b aﬁ; ......... ,%, b
K4=-x A A
Fig. 6. Homeomorphs of K, — 2
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Lemma 4, there exist two possibilities for orientations along lines incident
with a: either all are towards a or exactly one leads away from a. But
then Lemma 5 applied to the paths in 4 between a and b shows that at
b there are at least 2 lines leading away from that point. This contradicts
Lemma 4.

COROLLARY 7. If 8 is a source of an expanding star graph G, then the
graph G — s is oulerplanar.

THEOREM 8. If & graph G is an expanding star, then G is planar.

Proof. Let s be a source of G. Since the graph G'—s is outerplanar
by Corollary 7, it can be embedded in the plane so that every point of
this graph lies on the exterior region. Now G can be reconstructed from
G —s without disturbing planarity.

THEOREM 9. Let a graph G on p = b poinis be an expanding star. Then
G has (i) at least three points of degree at most four, and (ii) at least four
points of degree at most five.

Proof. If s is a source of @, then by a result in [1] and Corollary 7,
the outerplanar graph G'—s has at least three points of degree at most
three. In case any of these points is adjacent to s, it has degree not greater
than 4 in @. This completes (i), and part (ii) follows directly from a similar
result in [1], since the graph @ is planar by Theorem 8.

The chromatic number x(G) of a graph G is the minimum number
of colors needed to color the points of G such that adjacent points are
colored differently.

THEOREM 10. Let a graph G be an expanding star. Then x(G) < 4.

Proof. If s is a source of @, then G — s is outerplanar. So (G —38) <3
(see [1]). Thus, at most three colors are needed for G — 8, and, if necessary,
a fourth color can be assigned to s in a minimal coloring of G.

In [1], a graph @ was defined to have property P,, » > 1, if G contains
no subgraph which is homeomorphic from K, ., or Ky g/}, (n+2)2s Where
{#} = —[—=«]. Thus, for n = 1,2, 3 and 4, the property P, is, respec-
tively, totally disconnected, forest, outerplanar and planar. In view of the
preceding theorem, it is of interest to investigate the embeddability of
graphs with property P, in expanding stars. The case n = 4 is of particular
significance, for if every planar graph embeds in some expanding star,
the Four Color Conjecture stands proved. Unfortunately, the embedding
property breaks down even at » = 3 as we see in the following.

It is obvious that a totally disconnected graph G consisting of p
isolated points (i. e., baving property P,) can be embedded in an expanding
star by considering a suitable star graph. That the graph G, of Fig. 6 is
not an expanding star shows that not every tree need be an expanding
star. However, an induction argument can be used to prove that every
tree T' can be embedded in some expanding star G; indeed, we can further
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assure that 7' does not contain a source of G. So, if F' is any forest (i. e.,
F has property P,), then F' can be embedded in some expanding star.
It was proved in Theorem 6 that if G is an expanding star with source
s and H is any subgraph of G such that s ¢ H, then H fails to contain any
subgraph which is homeomorphic from the graph G, of Fig. 6. So, we
observe that the outerplanar graph G; of Fig. 6 cannot be embedded in

Gy: Gy: Gs:
Fig. 6. Counterexamples on embedding

any expanding star. This settles in the negative the embedding question
discussed above for all properties P,,n > 3.

We have seen that expanding stars generate a large class of planar
graphs whose chromatic number does not exceed four, and many inter-
esting questions can now be posed. For example, we conclude by stating
a combinatorial problem:

Is there any neat formula to determine the number of elements in
E(n) % (P 822)
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