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EXTREME POSITIVE OPERATORS ON INVOLUTION ALGEBRAS
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Introduction. In 1963 Phelps [23] has shown that the extreme positive
unital operators defined on a selfadjoint algebra of bounded functions and
taking values in a function algebra are exactly the multiplicative positive
operators. This extends a result of A. and C. Ionescu-Tulcea [15], who proved
an analogous assertion for the algebra of all continuous functions on
a compact Hausdorff space. The methods of proof were quite algebraic and
rather elementary; as indicated in [4] they can be applied to certain (not
necessarily associative) ordered algebras (for definition see Section 1). A charac-
terization of extreme positive functionals as the multiplicative positive func-
tionals was given by several authors; for example by Tate [30] for a selfadjoint
algebra of bounded functions, by R. Kadison (see [19]) for an ordered algebra
with order unit, and by Bucy and Maltese [6] for a commutative unital Banach
*-algebra. Generalizations to extreme positive operators on certain Banach
*-algebras can be found in [12] and [17]. A treatment of extreme positive
operators on ordered algebras was given by Donner [9] in 1976.

One aim of this paper is to show that the characterization of extreme
positive operators on ordered algebras applied to complex *-algebras yields
not only a more transparent treatment but also new and more general results.

In the first section we present a brief discussion of extreme positive
operators on ordered algebras, since these characterizations are fundamental in
the sequel. In the second section we discuss extreme positive functionals on
certain *-algebras. As an application we obtain a surprisingly simple proof of
a commutativity criterion given by Ogasawara [22] for a C*-algebra and
extend his criterion to LMC algebras with continuous involution and with
a closed cone.

It is well known that every unital selfadjoint algebra of complex-valued
functions on a set X.(separating the points of X) can be considered as a unital
commutative LMC algebra with continuous involution when endowed with
the topology of pointwise convergence. The cone of all pointwise positive
functions on X coincides with the closure of the wedge induced by the
involution. In the third section we show that not every *-algebra is order
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isomorphic to a suitable function algebra. For example, a commutative Banach
*-algebra A4 is order isomorphic with a selfadjoint function algebra iff the
wedge A, is closed and antisymmetric.

In the fourth section we discuss extreme positive operators on a unital
commutative *-algebra taking values in a commutative LMC algebra with
continuous involution. We denote the set of all positive operators satisfying
T1 <1 by KA, B), and the subset of all unital operators in K,(A4, B) by
K,(A, B). If the closed wedge of B is antisymmetric and the algebraic unit
element of A4 is an order unit, then the extreme points of K;(4, B) are exactly
the multiplicative operators in K;(4, B) (i=0, 1). One may replace the
assumption of order unit by the hypothesis that the wedge A4, is of type 0; for
the definition see Section 1. For example, it is a direct consequence that the
Arens algebra I’[0, 1] does not have an extreme unital positive functional.

In the last section we apply these results to unital commutative Banach
*.algebras 4, B and obtain the results of [12] as an easy corollary. Moreover,
we show that the symmetry of the involution of B is a necessary condition in
order that K;(A4, B) be the closed convex hull of its extreme points in the strong
operator topology under the additional assumption that A has at least two
unital positive functionals.

1. Extreme positive operators on ordered algebras. In this section we
consider not necessarily associative algebras with unit over the field R or C.
A convex subset A, satisfying A4, < A, for all AeR with' A > 0 is called
a wedge. Every wedge A, induces a reflexive and transitive relation <, where
a < b is defined by b—ae A,. This order relation is compatible with the real
vector space structure. A wedge A, is antisymmetric iff 0 < a < 0 implies a = 0
or, equivalently, A, n —A, = {0}. For ee A, we define the order interval

[0,e]:={aceAd: 0<a<e}.

An element e€ A, is called an order unit if the linear span of [0, e] is the entire
vector space 4, i.e.,, Lin[0, e] = A. We say that A is an ordered algebra if A is
a unital not necessarily associative algebra endowed with a wedge 4, which
contains the unit element 1 and is closed under multiplication, ie., a, b >0
implies ab > 0. A wedge A, is called Archimedean iff for ac A, be A, the
inequality na < b for all ne N implies a < 0.

Now, let 4, B be unital algebras endowed with a wedge A4, resp. B,
(containing the unit element). An operator T: A — B is positive iff T(A,) = B,
and unital iff T1 =1. As in [4], [16], [23] we define

L(A, B):= {T:A - B: T linear},
Ko(A, B):= {TeL(A, B): T positive and T1 < 1},
K,(A,B):={TeL(A, B): T positive and T1 = 1}.
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A linear operator T is called Jordan multiplicative if T satisfies the relation
T(a?) = (Ta)? for all ae A. For a subset M < L(A, B) we denote the set of all
multiplicative (resp., Jordan multiplicative) operators in M by Hom M (resp.,
JHom M).

1.1. THEOREM. Let A, B be ordered algebras and Te K,(A, B) an extreme
point (i = 0, 1). Then for all a,e Lin[0, 1] and for all ae A we have the equalities

T(aga) = T(ap)T(@) and T(aa,) = T(a)T(ay).
In particular, if 1, is an order unit, then
extK,(A, B)c HomK,A,B) for i=0,1.
Proof. Let 0 <a,< 1, TeK;(A, B) and define
Saol@): = T(ao)— T(a,) T(@),

which is a linear operator. Using the fact that A, and B, are closed under
multiplication, it is easy to see that T+ S, is in K(A4, B). Since Tis extreme,
S, =0, ie,

T(aga) = T(ay)T(a).

Since T is linear, this holds for all a, in the linear span of the order interval
[0, 1]. Similarly the second equality follows. The proof is complete.

Our proof depends on the fact that the order interval [0, 1] contains
enough elements. In [4], Theorem 8, an example is given of an extreme positive
operator defined on a function algebra which is not multiplicative. In that
example the order interval consists only of constant functions. The assumption
that the unit element is an order unit is very strong, but it seems essential. If the
operators involved are continuous with respect to a certain topology, it is of
course sufficient to assume that Lin [0, 1] is dense in 4, i.e., 1 is a quasi-order
unit (cf. [27], p. 241). Nevertheless, Bonsall, Lindenstrauss and Phelps have
shown another way to guarantee that the order interval [0, 1] contains enough
elements: a wedge A, is called of type ne N U {0} iff ae A, implies that
(1+a)”! exists and a"(1+a) 'eA,.

Now, let 4 be an ordered associative algebra and A, of type 0. For a,e 4,
we have 0<a,<1+a, Since 4, is closed under multiplication and
(1+a,)"'eA,, we obtain

0<ag(l+a,)" ' <.
If Tis extreme in K,(4, B) (i=0, 1), by Theorem 1.1 we obtain

T(ao(1+ap)~'a) = T(ag(l +ay)~ ") Ta
and
T(aay(1+ay)") = TaT(ag(1 +ay) ™)
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for all ae A. By using the associative law, a quite algebraic but tricky
computation shows that these equations imply

T(aqa) = T(ay)Ta

(cf. [4], p. 164). If the wedge A, generates 4, i.e., Lin A, = A, we can conclude
by the linearity of T that

T(ba) = TbTa for all a, be A.
So we have proved the following

1.2. THEOREM. Let A, B be ordered associative algebras and suppose that A,
generates A and is of type 0. Then

extK;(4, B)c HomK;(A, B) for i=0, 1.

ExaMPLE. Let A4 be the algebra M, (C) of all (3 x n)-matrices over C. We say
that a matrix is positive iff every coefficient is non-negative. It is obvious that
A is an ordered algebra relative to the product of matrices. The set K,(4, C)
has extreme points (for example, the evaluation of the first diagonal element)
but there is no multiplicative functional (relative to the product of matrices),
i.e, we do not have

extK,(A, C) < HomK (4, C).

Clearly, the unit element is not an order unit and the wedge A4 . is not of type 0.
Now, let us consider the converse implication, i.e.,

HomK;(A, B) c extK,(A, B).

If A = B, the identity operator is in HomK;(4, A). Then the validity of the
above inclusion would imply the existence of an extreme point in K;(4, 4). But
it is not difficult to show that there is no extreme point in K;(A4, B) if the wedge
A, does not generate A4 or if the wedge B, is not antisymmetric (cf. [23], p.
267, or [9]), so these conditions are necessary to prove the above inclusion.

Our proof rests on the Schwarz inequality. A different proof can be found in
[9], which uses the fact that the unit element of A is an order unit.

We call a positive operator T: A - B a Schwarz map iff

(Ta)> < T1T(a?) for all acA,.

The following theorem is rather technical in its hypotheses — this hopefully
will be justified by the applications to follow.

1.3. THEOREM. Let A, B be not necessarily associative unital algebras endowed
with the wedge A ., resp. B, containing the unit element of A, resp. B. Assume
that A, generates A and B, is antisymmetric and that every operator
TeK,(A, B)(i =0, 1) is a Schwarz map. Suppose furthermore that the square of
the difference of two positive elements of B is positive and that (b, —b,)* =0
implies b, —b, =0 for all b,, b,eB,. Then for i =0, 1

JHom K,(A, B) < extK,(4, B).
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Proof. Let T be a Jordan homomorphism and let T=4(T,+T,) be
a convex combination of positive operators T;, T,€K;(4, B)(i =0, 1). The
Schwarz inequality applied to T,, T, yields for ae A4,

3 ((7'1“)2 + (Tza)z) < %Tl 1 T1(az) +1 T1T, (az) < %(Tl(az) + Tz(az))
= T(@) = (T)? = }[(T,a + T,aTya+ TaT,a+(T,a)7].

This yields 0 > 4 (T,a— T,a)? = 0, where the last inequality follows from our
hypothesis. Since B, is antisymmetric, we have (T,a— T,a)> =0 and, by
assumption, T,a = T,a. Since A, generates the algebra, T, =T, ie, T is
extreme.

1.4. Remark. It is not difficult to extend these results to the set K;(4, B) of
all continuous positive operators in K;(4, B)(i =0, 1) if A, B are endowed
with a vector space topology. Then under the assumptions of Theorem 1.3 we
conclude that every positive multiplicative operator in K;j(A, B) is extreme. On
the other hand, the operator S, is continuous if the multiplication is separately
continuous. If we assume that the order interval [0, 1] is total in 4 and A4, B
are ordered algebras, we conclude by Theorem 1.1 that an extreme operator is
multiplicative.

A discussion of the extreme rays of the set of all positive operators can be
found in [4], [9], [23], and in the case of an order complete vector space in

[18].

2. Extreme positive functionals on *-algebras. Let A be a unital complex
*-algebra. We denote the set of all selfadjoint elements by Sym 4, i,

SymA:= {acA: a = a*}.
It is obvious that the set

N
A,:={) afa;: NeN,a,eAd,i=1,..., N}
i=1

is a wedge. So we can apply the definitions of the first section. Since C is
a *-algebra, a functional f'is positive if f(4,) = C. or, equivalently, f(a*a) = 0
for all ae A. The polarization formula shows that the wedge of a unital
*-algebra is always generating (cf. [25]). We set K,:= K, (4, C).

2.1. COROLLARY. Let A be a unital *-algebra. Then every multiplicative
positive unital functional is extreme in K ,.

Proof. We apply Theorem 1.3. Obviously, it suffices to show that every
positive functional is a Schwarz map, but this is an easy consequence of the
Cauchy-Schwarz inequality.

The Jordan product o of an algebra is defined by

aob = %(ab + ba).

At first we will generalize a result of Bucy and Maltese [6]. If a *-algebra is
endowed with a vector space topology, we denote the closure of A, by 4,.
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2.2. THEOREM. Let A be a unital Banach *-algebra. If A, or A, is closed
under Jordan multiplication, then ext K, = HomK ,.

Proof. It is a consequence of the square root lemma of Ford that the unit
element of a Banach *-algebra is an order unit for the wedge A, and, in
particular, for 4, (see, e.g., [25]). Since A is an ordered algebra relative to the
Jordan product, we can apply Theorem 1.2.

2.3. PROPOSITION. Let A be an algebra with an Archimedean wedge A .. Then
the following assertions are equivalent:

(@) a=0 and b =0 imply aob > 0.

(b) 0 < a < b implies aob = 0.

() 0< a<b implies 0 < a?< b2

Proof. The first implication is trivial and (b) = (c) is easy, since 0 < a < b
implies 0 < b—a < b+a and, by (b),

0 < (b—a)o(b+a) = (b*>—a?).
For the last implication consider for all ne N the element
c,;=a+ib with a,b> 0.

Then 0 < a < ¢, implies 0 < a? < ¢?, which yields —n(ab+ ba) < b Since 4,
is Archimedean, we obtain ab+ba = 0.

The statement (c) is called the condition of Ogasawara (see, e.g., [28], [31]).
Ogasawara has shown in [22] that this condition implies the commutativity of
a C*-algebra. Since the wedge 4, of a C*-algebra is closed and antisymmetric,
it is a consequence of

2.4. COROLLARY. Let A be a unital Banach *-algebra. Suppose that A, is
antisymmetric and the condition of Ogasawara holds for A,. Then A is
commutative.

Proof. Since a closed wedge is Archimedean, we see by Proposition 2.3
that 4, is closed under Jordan multiplication. By Theorem 2.2 we know that
every extreme point of K , is multiplicative. Since K , is the weak star closure of
the convex hull of its extreme points, we have

f(i(uv—vu)) =0 for all feK, and for all u, veSym A.

But then i(uv—vu) is in 4, N — A, = {0}; see formula (1) below. Thus 4 is
commutative.

2.5. Remark. The wedge A, of a unital Banach *-algebra is Archimedean
iff A, is closed. This stems from the fact that 4, generates A and the unit
element is an interior point of A, (cf. [27], p. 222).

Now, let us consider more general *-algebras. If A4 is a unital *-algebra
endowed with a locally convex vector space topology, P, denotes the set of all
unital positive continuous functionals on A, and P, the set of all unital positive
functionals whose restrictions to Sym A are continuous. If the involution is
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continuous, then these sets coincide. Using a separation theorem for the real
locally convex vector space Sym4A it is not very difficult to see that

(1) ac A, nSymA<>aecSymA and f(a) >0 forall fe P,

(cf. Proposition 1.1 in [25]). A topological algebra is a topological vector space
with jointly continuous multiplication. An algebra with a locally convex vector
space topology is called a locally-m-convex algebra, or an LMC algebra for
short, iff there exists a family (p,),; of submultiplicative seminorms generating
the topology of A. One can assume that the family contains the maximum of
any finite number of seminorms of the family. We denote the completion of
A/p; '({0}) by A, and the projection of a€ A in A4, by a,. It is well known that
an LMC algebra can be topologically embedded into the projective limit of the
Banach algebras A,. A complete metrizable LMC algebra is called a Fré-
chet algebra.

For a unital LMC algebra with continuous involution we denote the set of
all unital positive functionals which are bounded for a given seminorm p, by
P,. Clearly, then

P, =P,

ael

Brooks [5] has shown that P, is the w*-closed convex hull of its extreme
points and
extP, = | JextP,.

ael

Furthermore, P, is affinely homeomorphic to P Ay in particular
extP, = extP, .

It is easily seen that the closure of the wedge (4,), in the Banach *-algebra A4,
is closed under Jordan multiplication if A, or A, are closed under Jordan
multiplication. This gives

2.6. COROLLARY. Let A be a unital LMC algebra with continuous involution.
If A, or A, are closed under Jordan multiplication, then extP, = HomP ,. If
the condition of Ogasawara holds for the closed cone A ., then A is commutative.

2.7. LEMMA. Let A be a unital *-algebra and B be a unital commutative LM C
algebra with continuous involution or a unital commutative Banach *-algebra.
Then every positive map T:A — B is a Schwarz map and the inequality

(Ta)*Ta < T1T(a*a)

holds for all ac A relative to B..
Proof. Since T is positive, the element

b:= T1T(a*a)—(Ta)*Ta

is selfadjoint. Because P, is the w*-closed convex hull of its extreme points,
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it suffices to show by (1) that f(b) >0 for all feextP,. Since an extreme
functional is multiplicative, we have

fb) = (foT()(foT(a*a))—|fo T(a)*.

But foT is a positive functional and the statement follows now from the
Cauchy-Schwarz inequality.

3. Function algebras and *-algebras. Let 4 be a unital algebra of complex-
valued functions defined on a set X. We assume that 4 separates the points of
X. In the case of real-valued functions one may consider the complexification.
A function a€ A is called positive iff a(x) = 0 for all xe X. We denote the set of
all positive functions by A4, and the complex conjugate function by a. The
algebra is selfadjoint iff ae A implies ae A. It is evident that A is selfadjoint iff
the cone A, generates A.

As mentioned above the existence of an extreme positive operator on
A implies that the wedge 4, generates the algebra (cf. Proposition 7.2 of [23]).
So we will assume that A is selfadjoint. Then A4 is an LMC algebra with
a continuous involution, where the involution is given by complex conjugation
and the topology is induced by the submultiplicative seminorms p, (x € X)
defined by p,(a): = |a(x)|, i.e., the topology of pointwise convergence. Further-
more, the relation 4, < A, is obvious. But, in general, this inclusion is proper.
For example, consider the algebra of all polynomials over C regarded as
functions on the interval [0, 1]. Then the polynomial 1 —z is in A,, but not in
A, , since A, contains only polynomials of even degree. Thus the ordering
induced by the set X is different from the ordering induced by the involution. It
is an interesting fact that we have A, = A, if we consider the polynomials as
functions on the line R.

If A, and Ay are different, the term positive functional is ambiguous. To
avoid.confusion we define by K, the set of all unital functionals on A which
are positive relative to Ay and similarly K, . For every xe X the Dirac
functional 6, is defined by

o,(a@):=a(x) with aeA.
The inclusion {d,: xeX} < K, < K, is trivial. Corollary 2.1 yields
{0,: xeX} cHomK, K cextK,,.

But even in the case A, = A, this inclusion may be proper. For example,
consider the algebra of all continuous bounded functions on a completely
regular Hausdorff space. In this case one can identify extK, 6 with the
Stone—Cech compactification of X. Note, however, that {0,: xe X} is dense in
extK, ..

Although the next theorem may be well known we will sketch the proof
since we do not know a reference for it.
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3.1. THEOREM. Let A be a unital selfadjoint algebra of complex-valued
functions on a set X. Then Ay is the closure of A, in the topology of pointwise
convergence and P, is the w*-closed convex hull of the set {d,:x€X]}.

Proof. Let ae A,, i.e., a(x) = 0 for all xe X. We consider the expansion of
the square root function: for all ne N there exists k,€ N such that for all BeR
with 0 < f <2 we have

y (i)(ﬂ—l)"—ﬁl < 1/n.

k=0

3 (N

Then a, is a selfadjoint element and we want to show that a2 converges to a in
the topology of pointwise convergence. It suffices to show that a,(x) converges

to \/@ for every xe X. But for n > a(x) we have
1
o
For the second statement assume that f;, is in P, but not in the w*-closed
convex hull of {§,: x€ X} denoted by C. It is well known that we can separate
fo and C by a linear w*-continuous functional on A’. Since the dual of (4’, w*)

is isomorphic to A4 via evaluation, we can find a selfadjoint element ae A such
that

Define

la,(x)—+/a(x)| <

d(fo) = fola) < inf{d(y): yeC} =:a.
But then a—a is in A, but not in A,, a contradiction.
The next theorem is well known and is listed for completeness.

3.2. THEOREM. Let A be a selfadjoint algebra of bounded functions on a set
X endowed with the supremum norm || || .. Then Ay is the norm closure of A . If
A is complete, we have A, = Ay.

Now it is natural to ask whether every *-algebra A corresponds to a certain
space of complex-valued functions. We say that A is order isomorphic to
a function space F on a set X iff there exists a vector space isomorphism
@: A - F which preserves the order in both directions, i.e., ae 4, iff p(a)(x) = 0
for all xe X. We will not require that the multiplication be preserved.

3.3. PROPOSITION. Let A be a unital Fréchet algebra with continuous
involution or a unital Banach *-algebra. Then A is order isomorphic to a function
space F iff the wedge A. is antisymmetric and closed.

Proof. Since F, is antisymmetric, this carries over to 4, . For every xe X

the functional ,0¢ is positive, and therefore automatically continuous since
A is a Banach *-algebra, resp. a Fréchet algebra with continuous involution.
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Since
A, = () (4,000, )),

xeX

the wedge A4, is closed. The converse is a consequence of the next proposition.
Observe that

A, =A, nSymA
if A, is closed.
3.4. PROPOSITION. Let A be a unital *-algebra with a locally convex vector
space topology. Assume that A, nSym A is antisymmetric. Then
acA,nSymA iff f(a)=0 forallfeP,.

Thus (A, A, N Sym A) is order isomorphic to a function space.

Proof. In view of (1) it suffices to show that f(a) > 0 for all fe P, implies
that a is selfadjoint. Let a = u+ iv with u, ve Sym A. Since f(u), f(v) are real, we
have f(v) = 0 for all fe P,. By (1),

ved, n—A4, nSymA = {0}.
For the second statement define X:= P, and g(a): X - C by
e@(f):=f@ (feP))

and F as the image of g. By the first statement, ¢ preserves the order. g is
injective since g(a) = 0 implies, by the first statement, that

aeA,n —A, nSymA = {0}.

We have given in [25] an example of a Banach *-algebra 4 with a cone 4,
which is not closed.

4. Extreme positive operators on commutative *-algebras. Let A, B be unital
*-algebras with a vector space topology. We have seen in Theorems 3.1 and 3.2
that besides A, the wedge A, is of great interest. Thus it is natural to consider
linear operators T: A — B with the condition

T(4,)= B, or T(4,)<B,,

etc. The notation of the sets K;,(4, B) does not indicate the corresponding
wedge. In order to avoid a boundless notation we substitute the letters 4, B by
the corresponding wedges. For example, K,(4,, B,) denotes the set of all
unital linear operators with T(4,) = B, . The following inclusions are trivial
@i=0,1):

K(A,,B,) cK(A,,B,)<K(A,,B,) and K(A,,B,) <K(4,,B,).

If we want to assert a statement simultaneously for the wedges A, and 4, we
say that the statement holds with 4, = A4,, A, using the letter A4, as
a variable for A, , A4,.
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4.1. THEOREM. Let A be a unital *-algebra (endowed with a vector space
topology in the case A, = A,) and B be a unital commutative LMC algebra with
continuous involution. If B, is antisymmetric, we have

Hom K,(4,, B,) < extK,(A,, B,)
for A,=A,, A, and B_=B,,B,, and i=0, 1.
* ]

Proof. We apply Theorem 1.3 for the case B, = B, and A, = A4,. By
Lemma 2.7 every positive operator is a Schwarz map. The condition that the
square of the difference of two positive elements is positive is trivial for the
wedge B, . Since the multiplication is jointly continuous, this property carries
over to B,. Now let b,, b,e B, with (b, —b,)*> =0. The Cauchy-Schwarz
inequality shows that

f(by—=b,)=0 for all feP,.

By (1) we have b, —b,e B, n — B, which shows that b, —b, = 0. So we have
proved that

HomK(A,, B,) cextK,(4,, B,).

Now let T be an element of HomK;(A4,, B,). It is trivial that then T is in
HomK;(4,, B.), and therefore extreme in KA., B.). But then T is also
extreme in the subset K (4,, B,).

It is remarkable that the above inclusion even holds for a non-commutative
C*-algebra (cf. Theorem 3.5 of [29] and Theorem 3.6 of [32]). Indeed, the
commutativity of B was only used to conclude that a positive operator is
a Schwarz map. But for C*-algebras A4, B this is just the inequality of Kadison.
For further results on non-commutative algebras,we refer to [2].

4.2. COROLLARY. Let A be a unital commutative *-algebra and B be a unital
commutative LMC algebra with continuous involution and B, antisymmetric. If
the wedge A, is of type O or the unit element is an order unit for A, then

HomK(4,, B,) =extK,(4,, B,)

with B,=B,,B,,i=0, 1.
Proof. Since A is commutative, the wedge A, is closed under multi-
plication, so A4 is an ordered algebra, and similarly B. Since the multiplication

of B is jointly continuous, B, is also closed under multiplication. Now apply
Theorems 1.1, 1.2 and 4.1. '

4.3. COROLLARY. Let A be a unital commutative topological *-algebra and
B be a unital commutative LMC algebra with continuous involution and B,
antisymmetric. If the wedge A, is of type O or the unit element of A is an order
unit for A,, then
HomK(4,, B,) = extK,(4,, B,)
with B,=B,,B,,i=0, 1.
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This follows from Theorems 1.1, 1.2 and 4.1.

As an application we consider the Arens algebra I’[0, 1] (for the definition
see [1], p. 96). Obviously, the wedge A, is of type 0. Thus the extreme positive
functionals are multiplicative by Corollary 4.2. But the zero functional is the
only multiplicative functional on the Arens algebra, which is proved in [1], p.
104. Thus extK;» = .

The involution of a *-algebra A is called symmetric if the spectrum o ,(a*a)
is non-negative for all ae A.

4.4. PROPOSITION. Let A be a complete unital LMC algebra with continuous
involution. Then the wedge A, is of type 0 iff the involution is symmetric.

Proof. For all ae A we have a*ae 4,. If the closed wedge is of type 0, we
know that (1+a*a)~! exists. It is well known that then the involution is
symmetric (cf. Section 32 in [10]). Now assume that the involution is symmetric
and let aeA,. It is not very difficult to reduce the case to a unital Banach
algebra with a symmetric continuous involution since P, is the union of the
sets P, and the spectrum o ,(a) is the union of the sets o, (a,) calculated in the
Banach algebra A, with ael. Since a is selfadjoint, there exists a maximal
abelian selfadjoint subalgebra M containing a. Then M is a commutative
Banach algebra with symmetric involution. Every multiplicative unital func-
tional f: M — C is positive and can be extended as a positive unital functional
on A (cf. Theorem 5.10 7° and 6.4 in [24]). Since a is positive in 4, we obtain
f(1+a) > 1. But then 1+a is invertible and positive.

The following theorem is an easy consequence of Remark 1.4.

4.5. THEOREM. Let A be a unital commutative topological *-algebra and B be
a unital commutative LMC algebra with continuous involution and B, antisym-
metric. If the unit element of A is a quasi-order unit for A, (resp. A,), then

HomKj(4,, B,) = extK;(4,, B,)
for B,=B,,B, and i=0,1, and A, = A, (resp. A, = A4,).
4.6. Remark. We have assumed in the last theorems that the involution of
the range space B is continuous. If B is a Banach *-algebra and B, is
antisymmetric, then the involution is automatically continuous. This is clear

since B, is antisymmetric iff B is *-semisimple (cf. Theorems 4.2 and 4.4 in
[24]). In particular, B is semisimple, and thus the involution is continuous.

5. Positive operators and norm conditions. Let 4, B be unital algebras of
complex-valued bounded functions. It is well known (Theorem 1.3 in [23]) that

2  K,(A, By={TeL(A, B): T1=1, ||Tall, < llall, for all aeA}.

It is remarkable that the set on the left-hand side is defined by purely algebraic
conditions while the set on the right-hand side contains a norm property.
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For a *-algebra A we define

lalp,: = sup{|f(a)l: feP,}.

5.1. PROPOSITION. Let A, B be unital algebras endowed with a locally convex
vector space topology and with a continuous involution. If B, is antisymmetric
and P, is w*-bounded, then

K (A,,B,)={TeL(A, B): T1 =1, |Tulp, < lalp,}.
This result can be deduced from (2) by using the fact that A, B are order

isomorphic to a function space (cf. Propositicn 3.4).

In the last section we will discuss the extreme points of a convex set
introduced by Espelie [12]. If 4, B are unital Banach *-algebras, we define

S.(A, B): = {TeL(A, B): T1 =1, ||Ta|| < ||la|]| for all ae A and T positive},
U.(A, B):= {TeL(A, B): ||Ta|| < ||a|| for all ae A and T positive}.

Then the first of the inclusions

(3) S.(A,B)c K,(A,B) and U,(A, B)c KA, B)

is trivial. In the second case observe that ||T1|| <1 implies that ./(1—T1)
exists, i.e, T1 <1 in A,. Let Te K (A4, B). If the involution is isometric, we
have |Talp, <|lal| for all aeA. If B is a commutative C*-algebra, then

ITal| = |Talp ,, i.e., the inclusions (3) are equalities. Thus we obtain the following
result of [12] (Theorem 3):

5.2. THEOREM. Let A be a unital commutative Banach algebra with isometric
involution and B be a unital commutative C*-algebra. Then

U,(A4,B)=KyA,B) and S.(A, B)=K,(A, B).
In particular, the extreme points are exactly the multiplicative operators.

For the proof apply Corollary 4.2.

The closed wedge B, of a semisimple Banach algebra with symmetric
involution is antisymmetric (see, €.g., [24], Theorem 6.6). Thus the following is
a slight improvement of Theorem 1 of [12].

5.3. THEOREM. Let A, B be unital commutative Banach algebras with isometric
involution and B, antisymmetric. Then

HomU ,(A, B)c extU,(4,B) and HomS (A4, B) < extS, (A, B).
Proof. By Theorem 4.1 we have
extKy(4, B) o HomK (A4, B) o Hom U, (4, B).

Thus every multiplicative operator T of U (A, B) is extreme in K (A4, B).
Therefore Tis extreme in the subset U (4, B). The same argument applies to
S.(A, B).
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The disk algebra is an example where the inclusion of Theorem 5.3 is
proper (cf. the example in [12], p. 62).
A linear operator T: A — B is called a spectral contraction if

|Tal, < |a|l, for all aeA,

where | |, denotes the spectral radius.

5.4. PROPOSITION. Let A, B be unital commutative Banach *-algebras and B,
be antisymmetric. Then the closure with respect to the strong operator topology
of the convex hull of the extreme points of K;(A, B) is contained in the set of all
spectral contractions.

Proof. By Corollaries 4.2 and 4.3 we know that every extreme positive
operator is multiplicative, and thus a spectral contraction. This property
carries over to convex combinations and to the closure in the strong operator
topology. The proof is complete.

5.5. LEMMA. Let A be a unital Banach *-algebra. Then the order interval
[0, 1] is spectrally bounded iff the involution is symmetric.

Proof. It is not very difficult to see that 4, N — A, is spectrally bounded if
and only if A, n — A, is spectrally bounded. For ae A4 it is well known that
the selfadjoint element |a*al,, —a*a is contained in A4,, ie,

0 < a*a < |a*alp, =:m(a)?,

for example see formula (1). Thus [0, 1] is spectrally bounded iff m(a)> < 1
implies |a*al, < C for some C > 0. This is equivalent to

la*al, < Cm(a)?.

By Theorem 6.5 of [24] this is equivalent to the symmetry of involution.

5.6. THEOREM. Let A, B be unital commutative Banach *-algebras and B, be
antisymmetric. If K (A, B) (resp. K,(A, B)) is the closed convex hull of its
extreme points in the strong operator topology and P, contains at least two
elements (resp. one), then the involution of B is symmetric.

Proof. Let f, #f,€P,. Then there exists a selfadjoint element a,€ A4,
linearly independent of the unit element, with f;(a,) # f,(a,). By adding
a constant and multiplying with a real scalar we can assume that f,(a,) = 1 and
f3(ap) = 0. Let b,e[0, 1] and consider the unital positive operator

T:=bof,+(1=bo)f;.

By Proposition 54, T is a spectral contraction. In particular, we have
|Tayl, = |bol, < lagl,- Thus the order interval is spectrally bounded. Now apply
Lemma 5.5. In the second case consider T:=b,f;.

It is easy to see that K;(A4, B) contains no elements if P, is void. Similarly,
K, (A, B) consists of a single element if P, consists of a single element (with the
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general assumption that B, is antisymmetric or, equivalently, P, separates the
points of B).

If B is C*-equivalent, i.e., B is topologically isomorphic to a C*-algebra,
then one may use a result of [21] as follows: by 4 we denote the enveloping
C*-algebra of the unital commutative Banach *-algebra A4 (cf. Theorems 4.5
and 4.6 of [24]). It is easy to see that K (4, B) is affinely and topologically
isomorphic to K;(4, B) endowed with the strong operator topology induced by
A, resp. A.

Morris and Phelps [21] have shown that K (4, B) is the convex hull of its
extreme points iff Py is Stonean.
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