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1. Introduction. A generalization of the classical Mazur game is
presented * in which the players are permitted to choose sets from any
family of sets. The sets for which the players have winning strategies
are characterized for some special families of sets; e.g., all perfect subsets
of the unit interval, all closed subsets of the unit interval with positive
Lebesgue measure, all subsets of the unit interval having order type
14+ A4+1, ete. For this characterization, the concept of a singular set is
introduced and leads to a unified method of classifying “negligible sets”
in mathematics, e.g. sets of the first category, sets of Lebesgue measure
zero, etc.

If € is a non-empty family of subsets of a non-empty set X and §
is a subset of X, then the game I'(8, €) is played as follows:

Two players, I and II, alternately choose sets in € to define a de-
scending sequence of sets, player I selecting the sets in the sequence with
odd index and player IT selecting the sets with even index. If the intersec-
tion of the constructed sequence has at least one point in common with &,
then player I wins; otherwise player II wins. When X = [0,1] and ¢
is the family of all closed subintervals of X with non-empty interiors,
then I'(8, €) is the Mazur game.

The problem is to characterize those sets S for which the players
have winning strategies.

The solution to this problem for a topological generalization of the
Mazur game has been given by Oxtoby [10]. In Section 2 the concept
of an “IM-family” is introduced and provides a somewhat different gener-
alization of the Mazur game. Using the terminology and proofs of Oxtoby,
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with slight modification, the solution to the problem when € is an IR-family
is presented in Section 3. Several examples of IM-families are presented
in Section 4 and some problems are given in Section 5.

2. Definitions. Let & be a family of subsets of a set X. A member
of & will be called an &-set.

Definition. A family € of subsets of a non-empty set X is called
an M-family if € satisfies the following axioms:

1. The intersection of any descending sequence of ¥-sets is non-
empty.

2. Suppose x is a point in X. Then

a. there is a %-set containing z, i.e. X = | J¥; and

b. for each %-set A, there is a ¥-set B < A such that z¢ B.

3. Let A be a ¥-set and let 2 be a non-empty family of disjoint ¢-sets
which has the power less than the power of €.

a. If ANn(|J2) contains a ¥-set, then there is a P-set D such that
A ND contains a %-set.

b. If A Nn(|J2) contains no ¥-set, then there is a ¢¥-set B = A which
is disjoint from all sets in 9.

Remark. The family of all closed intervals [a¢, b] with 0 <a< b <1,
the family of all closed sets with positive Lebesgue measure, and the family
of all perfect sets are M-families of subsets of the unit interval. Additional
examples are given in Section 4.

The solution of the problem when % is an IR-family depends upon
the following classification of sets which is a generalization of Baire cate-
gory:

Definitions. Let € be a family of subsets of X. A subset S of X is
singular with respect to €, or, more briefly, ¥-singular, if each %-set A
contains a €-set B disjoint from S. A countable union of #-singular sets
is called a %r-set. A set which is not expressible as a countable union of
#-singular sets is called a €y;-set. A subset S of X is said to have the Baire
property with respect to € if there is no ¢-set A such that, for every ¢-set
B < A, both BNS and BN (X —8) are %yr-sets.

Game-theoretical definitions. 6 will denote the empty sequence.
A play is a descending sequence {A4,>>_, of ¥-sets, and the result of the

play is the set (M) 4,. A strategy for player I is a function o defined for
n=1
all finite sequences of even length in ¥ and the empty sequence such that

o(0) is a €-set and, for n > 1, ¢(4,, ..., 4,,) is a ¥-set contained in 4,,.
A strategy for player II is a function v defined for all finite sequences of
odd length in ¥ such that, for each n >1, 7(4,,..., 4,,_,) i8 a €-set
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contained in A4,, ,. To each strategy o for player I and each strategy
for player II there is associated a play {o, 7) defined inductively as follows:
A, =0(0), and 4,, =7(4,,..., 43,_;) and A4,,,, =oc(4,,...,4,,) for
each n>1. If o and 7 are strategies for players I and II, respectively, then
a play {A,>p., 18 consistent with o if A, = o(0) and 4,,,, = o(4,, ..., 4,,)
for m > 1; consistent with v if A,, = v(4,,..., A3,_,) for n > 1; and con-
sistent with ¢ and 7 if it is consistent with both ¢ and 7.

Let 8 be a subset of X. A strategy o for player I is winning for player I
in the game I'(S, %) if, for every strategy v of player II, the result of the
play <o, ) intersects S. A strategy 7 for player II is winning for player II
in the game I'(S, ¥) if, for every strategy o of player I, the result of the
play (o, ) does not intersect 8. The game I'(8, ¥) is determined if either
player I or player II has a winning strategy.

3. The Mazur game for Ii-families. Lemmas 1 and 2 will be used
to prove Theorem 1, which characterizes the sets for which player II
has a winning strategy.

LEMMA 1. Each M-family A of subsets of X contains a maximal sub-
family 4 of disjoint sets such that X —\ ) M is A -singular.

Proof. Let A be the smallest ordinal number whose power is the same
as the power of 4 and let Ny, N,,..., N, ... be a well-ordering of A~
into a transfinite sequence of type A. Set M, = N, and assume M, has
been defined for all < a, where a < 4. If {M,|f < a} is a maximal family
of disjoint sets, then set M, = M,. Otherwise, let Ng, N7, ... be all those

members of 4 whose intersection with () M, contains no 4 "-set, and
B<a

define M, to be the first subset of N§ which is an A4 -set and is disjoint
from all M, for B < a (the well-ordering Ng, N7, ... being the restriction
of the well-ordering of #"). Then # = {M,|a < A} is the desired maximal
family. Set U = | J#. It will now be shown that X — U is 4 -singular.
Assume N is an 4-set, say N = N,, where a < A. If N n({U M;) contains

B<a

an A -set, then there is an A -set disjoint from X —U. If N n(J M)

B<a
does not contain an .4"-set, then there is an .4#"-set contained in N which
is disjoint from all M,, with f < a, and M, is the first .#"-set contained
in Ng which is disjoint from all M, for 8 < a. But, by virtue of the construe-
tion employed, N = N,. Indeed, let N; = N,, where y < A. Since
N, = Nj for some B, it follows that y < a. For each £ < a, let ¢ (&) be the
ordinal number such that Nj = N,, where Nj is defined to be N,.
@ 18 strictly increasing and, by considering the cases where & is a successor
or a limit ordinal, it is seen by transfinite induction that & < ¢ (&) for all
& < a. Therefore, y = a, and M, is an A '-set contained in N which is

disjoint from X — U. It follows that X — U is A4 -singular.
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LEMMA 2. If € is an M-family of subsets of X and A" is a subfamily
of € such that

(*) each €-set contains an A -set,

then A is an M-family of subsets of Y = \UJAN and the N4 -singular sets
coincide with the €-singular subsets of Y. Also, if U is a subset of Y and
Y- U is A -singular, then X — U is €-singular.

Proof. Axioms 1 and 2 are obviously satisfied. As for Axiom 3, if 4
is an A -set, then A N({_ 2) contains an 4 -set if and only if it contains
a €¢-set. Thus, Axiom 3 follows from (*), as does the fact that the .4 -sin-
gular and ¥-singular subsets of Y coincide. Finally, X —U = (X —-Y) u
U (Y — U) is the union of two #-singular sets whenever ¥ — U is A4 -singular.

THEOREM 1. Let € be an M-family of subsets of X and let 8 be a subset
of X. Player I1 has a winning strategy in the game I'(S, €) if and only
if 8 is a €;-set.

Proof. Assume throughout that ¥ is well ordered. If S is a %;-set,
then player II, clearly, has a winning strategy.

Conversely, suppose 7= is a winning strategy for player II. Follow-
ing [10], a 7-chain of order » is a descending-finite sequence {(4,, ..., 4,,>
of even length 2n in ¥ satisfying A,, = 7(44, ..., dg_,) for 1 < k< m.
A t-chain of order n+ %k is a continuation of a v-chain of order » if the
first 2n terms of both chains are the same. If {(4%, ..., 4%,> |te T} is a fam-
ily of z-chains of order n, then the intersection and union of these z-chains

are the sets () A%, and U A!,, respectively. If ¥ = (4,,..., 4,,> is
teT teT
a 7-chain of order n, then xe # means z¢ A4,,, and # is said to be contained

in a set B if A,, < B.

Let 4, be the family of all z-chains of order 1. For each ¥-set A,
there is a 7-chain of order 1 contained in A4, e.g. (A, 7(4)). Thus, Lemmas 1
and 2 can be applied to .4, to obtain a maximal subfamily .#, of disjoint
7-chains of order 1, the complement of whose union is ¥-singular. Assume,
for a given positive integer k, a maximal family .#, of disjoint z-chains
of order k has been defined by means of Lemmas 1 and 2. Let 4", denote
the family of all r-chains of order k + 1 which are continuations of r-chains
in A, . It will now be shown that each ¢-set contains a r-chain belonging
to A4, . Suppose A is a ¥-set. By induction, there is a r-chain {4,, ..., 4,
belonging to 47 such that A4,, < A. Let #/ = 4, and # = A, in the
proof of Lemma 1 and suppose 4,, = N,, where a < A. If a = 0, then
M, = N,, and hence if (B,, ..., B,;> is the r-chain in .#, with B,;, = M,,
then (B,,..., By, M,, 7(M,)> is a member of A", , contained in A.
Thus, assume a >0. If N,n(|J M,;) contains a member of A7, then

B<a
there is an ordinal number § < a such that N, "M, contains a member B
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of A°. Hence, if (B,, ..., By) is the 7-chain in .#; with B,, = M,, then
{Biy +..y By, B, 1(B)) is a member of A4, contained in 4. On the other
hand, if N, n({UJ M,) contains no member of 47, then M, = N,, so that

<a
if (Byy..., B;) is the z-chain in 4, with B,, = M,, then {(B,,..., By,
M,, v(M,)> is a member of 47, contained in A. Therefore, condition (*)
holds for 47, and the lemmas can be again applied to obtain a maximal
subfamily ., , of 47, , consisting of disjoint r-chains of order k-1 such
that X —(_J) #; ., is €-singular. It then follows, as in [10], that § is a €;-set.

A consequence of this characterization of the sets 8, for which I'(8, €)
is determined in favor of player II, is the following generalization of a result
of Lebesgue (see [3], p. 185-186, and [10]):

COROLLARY 1. For any €y-set S, there is a €-set A such that, for every
€¢-set B< A, SNB 18 a €yr-set.

Proof. If, for every ¢-set A, there is a ¥-set B = A such that SNB
is a ¥r-set, then player II has a winning strategy in the game I'(S, €)
and, consequently, 8 must be a €;-set.

Remark. Note that only Axiom 3 was used in the proof of Theorem 1.
In the generalization of the Mazur game to a topological space given
by Oxtoby, the family ¥ is assumed to satisfy the following conditions:

(i) every ¥-set has a non-empty interior, and

(ii) every non-empty open set contains a ¥-set.

In general, such a family is not an M-family. However, if (X, T)
is a topological space and € is a subfamily of J satistying Oxtoby’s condi-
tions, then ¥ satisfies Axiom 3.

THEOREM 2. Let € be an M-family of subsets of X satisfying the following
axiom:

4. There is a sequence {h,>p_, of functions mapping € into € such
that

a. for each €¢-set A, h,(A) < A; and

b. for every sequence (A, i, of €-sets, if {h,(A,) e, i a descending

sequence, then () h,(4,) contains only one point.
N=1]1

Then player I has a winning strategy in the game I'(S, €) if and only
if there is a €-set E such that EN(X —8) is a €r-set.

Proof. If there is such a ¥-set K, then player I, obviously, has a win-
ning strategy. Conversely, assume o is a winning strategy for player I
and let € be well ordered. It will be shown that £ N(X — 8), where £ = ¢(0),
is a ¥r-set. Define, as in Oxtoby’s paper, a new winning strategy o* for
player I, with ¢*(6) = ¢(6) = E, such that the result of each play consist-
ent with o* is a singleton. Use o* to define a winning strategy v for player IT
in the game I'(E N (X — 8), ¥) in the following manner. Let 4, be a €-set.
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If A, nE contains no #-set, then there is a €-set B< A, —E. Let v(4,)
be the first such set B and define 7(4,,..., 4,,,;) = Appy, for n>1.
On the other hand, if A, N E contains a ¥-set, let B, be the first such ¢-set;
define t(4,) = ¢*(E, B,) and, for n > 1, define

T(Aygy .oy A2n+l) = 0*(E7 B,, 4,, 4,, ..., A2n+1)'

By Theorem 1, EN(X —8) is a €-set.

THEOREM 3. If € is an M-family of subsets of X satisfying Axiom 4
and S 18 a subset of X which has the Baire property with respect to €, then
the game I'(8, €) is determined.

Proof. If player IT has no winning strategy, then S is a %y;-set.
Hence, there is a ¥-set A such that, for every ¢-set B < A, BN 8 is a €yy-set.
Since 8§ has the Baire property, there is a %-set F < A such that
En(X —8) is a €r-set. Therefore, player I has a winning strategy.

4. Examples of Ii-families.

Example 1. Let X = [0, 1] be a perfect set and let € be the family
of all perfect sets of the form X NI, where I is a closed subinterval of
[0,1]. Axioms 1 and 2 are, obviously, satisfied. Axiom 3 follows from
the fact that if 4 and D are ¥-sets, then 4 ND is either uncountable
and, hence, contains a %-set or it contains at most two points. For, if
A N (U2) contains a ¥-set, then A N D contains a ¥-set for some Z-set D.
On the other hand, if 4 N({U 2) contains no ¢-set and p, g A are two-sided
limit points of A (i.e., every open interval containing p (respectively, ¢q)
also contains infinitely many points less than p (respectively, ¢) and infi-
nitely many points greater than p (respectively, q)), then X Nn[p, q] is
a ¥-set contained in A and disjoint from every 2-set. Therefore, ¥ is an
M-family. Assume now that € is well-ordered and, for each positive inte-
ger » and each ¥-set A, define A,(A) to be the first ¥-set B = A whose
diameter is less than or equal to 1/n. Axiom 4 is thus seen to hold.

In this example, the ¥-singular sets coincide with the sets which are
nowhere dense relative to X, the €;-sets coincide with the sets which are
of the first category relative to X, and the sets having the Baire property
with respect to € are the sets having the classical Baire property relative
to X.

Note that, by virtue of Lemma 2, the family of all closed subintervals
of [0, 1] with non-empty interiors and rational end points is an IM-family
which determines the same %-singular sets as the IM-family € = {[a, b]|
0<a<b<1y).

Example 2. Another important case included both in Oxtoby’s
framework and the above framework is where X = E* is the Baire
space of all infinite sequences of points belonging to a set £ and €
consists of all Baire intervals. Axioms 1 and 2 are, obviously, satisfied,
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Axiom 3 follows from the remark after Corollary 1, and Axiom 4 is satisfied
when, for each n, h, assigns to each Baire interval a Baire subinterval
of rank greater than or equal to n. Thus, € is an IM-family satisfying
Axiom 4 and the ¥;-sets are precisely the sets of the first category.

Example 3. Let f be a non-constant, monotone increasing, contin-
uous function on X = [0, 1], let u, be the Lebesgue-Stieltjes measure
induced by f, and let € be the family of all closed subsets of X which
have positive u,-measure. Axioms 1 and 2 are satisfied as well as Axiom 3
upon observing that 2 must be countable. If functions %, are defined as
in Example 1, then Axiom 4 also holds.

By a result of Burstin [2], a set § < X is u,-measurable if and only
if there is no perfect set P of positive u,-measure such that every perfect
set @ = P of positive u,-measure contains points of § and points of X — 8.
Thus it follows that the #-singular sets are precisely the sets of u,-measure
zero and the sets which have the Baire property with respect to € coincide
with the u,measurable sets. Note that the same class of singular sets is
obtained upon replacing € by the family of all nowhere dense perfect
sets of positive u,-measure.

Remartk. J. C. Oxtoby has informed me that, in the case of Lebesgue
measure, this game is also included in his generalization; e.g., consider
[0, 1] with the density topology and let € be all ordinary closed sets of
positive measure. The solution to this game has also been given essentially
by Myecielski [8].

Example 4. Let X be the unit interval and let € be the family of
all perfect sets contained in X. Axioms 1 and 2 are, obviously, satisfied
a8 is also Axiom 4 when the functions &, are defined as in Example 1. As
for Axiom 3, if A N(|J 2) contains no ¥-set, then, by the Cantor-Bendixson
Theorem, A N.D is countable for each De 2. The set A N({J2) can, there-
fore, be expressed as a countable union of sets each of which has power
less than the power of the continuum. By a theorem in Lusin and Sier-
pinski [6], the proof of which may be viewed as the first occasion upon
which the present game was played, 4 N({UJ2) has power less than
the power of the continuum. Since, as also shown by Lusin and Sierpinski,
every perfect set in [0, 1] contains continuum many disjoint perfect sets,
there is a %-set B = A which is disjoint from every 2-set. If A n(|J2)
contains a %-set, then A ND must be uncountable for some set De 9
and, hence, there is a ¢-set contained in 4 N D. Thus, Axiom 3 is satisfied.

In this example, the #-singular sets and the €;-sets coincide. Included
among the %-singular sets are the “singular sets” discovered by Lusin
(see [4] and [b]) (originally, under the assumption of the Continuum
Hypothesis); e.g., uncountable sets which are of the first category rela-
tive to every perfect set. If there exists a set of the second category which
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has power less than the power of the continuum, then not all #¢-singular
sets are of the first category.

Note that if 4" is the family of all nowhere dense perfect sets or the
family of all perfect sets of Lebesgue measure zero, then it follows from
Lemma 2 that 4" is also an M-family and determines the same family
of singular sets as does ¥.

Example 5. Let X be an ordered set with order type 1+4+1 (i.e.,
with the same order type as the unit interval [0, 1]) and let € be the
family of all subsets of X with order type 1+ 4 1. To verify that Axiom 1
is satisfied, a generalization of the classical “Axiom of Ascoli” will be
established (see [13], p. 201 and 202).

PROPOSITION 1. Let X be an ordered set. If (A, >r_, 18 a descending
sequence of subsets of X and each A, has order type 1+ 141, then the intersec-
tion of the A,’s is nmon-emply.

Proof. Assume the conclusion does not hold. For each =, set
a, = inf A, and b, = sup 4,,. The sequence {a,>,_, s monotone increasing,
the sequence <b,>m_, is monotone decreasing, and a, < b, for all n, m.
Moreover, each of these sequences has infinitely many distinct terms.
For simplicity, assume 0 is a limit ordinal and proceed by transfinite
induction on the set of all limit ordinals less than the first uncountable
ordinal Q. Let B be a limit ordinal and assume, for all limit ordinals & < B,
a monotone increasing sequence {@;, ,>a-, containing infinitely many
distinct terms has been defined such that a,,,e¢ 4, for all n, a;,,<b,,
for all n, m, and a, < a; for all y < & There is an increasing sequence
{Enom_, of ordinal numbers such that

ﬂ = Sup En’
n

@ dn—o is a monotone increasing sequence with infinitely many distinct
terms, a; ¢ A4, for each n, and a; < by, for all n, m. If there is a largest
limit ordinal y less than 8, then the desired sequence can be obtained
upon setting &, = y+n. Otherwise, there is an increasing sequence {(y,>a_,
of limit ordinals such that

B = supy,,
n

in which case, set &, = y,+n. Define, for each n,

C, = {ze 4, | v < a;, for some k}
and
D, = {we 4, |z > a,_ for all k}.

The pair (C,, D,) constitutes a cut of 4, and, hence, determines an
element as, ¢ D,. It follows that {(a;, ,>n_, is a2 monotone increasing
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sequence in A, with infinitely many distinct terms such that a;,,€ 4,
for all n, a,,, < b, for all n, m, and a, < a, for all ordinal numbers y < .
Thus, it is defined a subset {a; | < 2} of A, with order type 2. However,
a set of order type 1 +14 1 can have no subset of order type 2. Therefore,
the intersection of the A,’s is non-empty.

Thus, Axiom 1 is satisfied. Axiom 2 is easily verified and Axiom 3
follows in a manner analogous to that used in Example 4 by virtue of
the fact that every ordered set of order type 1+ 1+ 1 contains continuum
many disjoint sets of order type 14+A+1 (see [13], p. 219 and 220) and
the fact that if A and D are ¥-sets and A ND is uncountable, then 4 ND
contains a ¥-set. To prove the latter result, let X be mapped order-iso-
morphically onto the unit interval. Now, any subset of [0, 1] having
order type 1+ 1+ 1 is an uncountable G,-set (see [13], p. 219). Thus, if 4
and D are two subsets of [0, 1] which have order type 1+1+1and A ND
is uncountable, then 4 N D is an uncountable G,-set. By a result of Young
[14], 4 NnD contains a perfect set and, hence, a nowhere dense perfect
set. Finally, any bounded, nowhere dense perfect set is order isomorphic
to the Cantor set, and upon removing from the Cantor set the “left end-
points”

1 1 7 1 7 19 25
37797 9’ 27" 27’ 21’ 27"

in (0, 1), a set of order type 1+ A+1 is obtained.

To verify Axiom 4, let a,, a;, ... be a countable order-dense subset
of X and let € be well ordered. For each » and each ¥-set A, let h,(4)
be the first €-set B = A such that either x < a, for all ze¢ B or © >a,,
for all z¢ B. Since between any two points of X there is a point a,, if
(A%, is any sequence in ¥ and <h,(4,)>n-, i8 a descending sequence,

then (M) h,(A4,) contains only one point.
Ne=1

Remark. Consider the special case where X = [0,1]. Due to the
fact that every set of order type 1+ 4-+1 contains a perfect set, and,
conversely, the ¢-singular sets in this example and Example 4 coincide.

In the next two examples, the terminology and theorems of [12]
will be used.

Example 6. Assume the Continuum Hypothesis. Let X = [0, 1],
let b be a continuous function in 5#,, let u* be the Hausdorff measure
associated with %, and let € be the family of all closed sets with positive
p*-measure. Axioms 1, 2a, and 4, obviously, hold. For Axiom 2b, take
an ascending sequence <{A,>,_, of closed sets such that

U 4, = 4—{a)

n=1
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and, then, choose an n for which u*(4,) > 0. As for Axiom 3, if A N(|J92)
contains a ¥-set, then A N.D is a €-set for some De 9. If A N(|J 2) contains
no ¢-set, then 4 N D has p*-measure zero for all D e 9, so that A— (AN (| 92))
is a @,-set of positive u’-measure and, consequently, contains a %-set.
Thus Axiom 3 holds. In this example, the %-singular sets include all
Borel sets of u"-measure zero.

Example 7. Assume the Continuum Hypothesis. Let X = [0, 1]
and let € be the family of all closed sets of Hausdorff dimension a for
some a with 0 < a <{1; then Axioms 1-4 are satisfied. In this example,
all Borel sets of dimension zero are ¥-singular sets.

Example 8. Let X be an uncountable set, let .# be a proper o-ideal
of subsets of X containing all singletons, and let ¥ = {4 | X — A4 e S}.
¢ is an IM-family, the class of ¥-singular sets coincides with #, and the
family of all sets which have the Baire property with respect to € is just
€¥uSf. Note that € does not satisfy Axiom 4.

Remark. Some very interesting new ideals of sets on the real line
which have arisen from game-theoretical considerations have recently
been investigated by Myecielski [9].

5. Problems. The first two problems are in the terminology of [1].

ProBLEM 1. Does the family of all perfect M-sets form an IM-fami-
1y ? (P 870)

Remark. Assuming the Continuum Hypothesis it can be shown
that the family of all closed sets which support a measure u, not identically
zero, whose Fourier-Stieltjes transform u(t) -0 as |t|—> oo, is an M-family.

PROBLEM 2. Does the family of all perfect sets which are not R-sets
form an M-family? (P 871)

ProBLEM 3. Can the Continuum Hypothesis be dropped in Examples 6
and 7?2 (P 872)

PrROBLEM 4. Does the family of sets which have the Baire property
in the sense of Example 6 coincide with the family of u"-measurable
sets? (P 873)

6. Concluding remarks. The concept of an I-family has led the
author to an abstract theory of Baire category which will appear
shortly (see [7]). Most of the known analogies between Baire category
and Lebesgue measure can be subsumed under this general theory
(see the book [11] of Oxtoby for a full discussion of these analogies).
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