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RECURSIVE PRIME MODELS FOR BOOLEAN ALGEBRARS
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JERUD MEAD (MACOMB, ILLINOIS)

It follows from the work by Tarski [8] and Ershov [2] that if T is
a complete extension of the theory 7'y of Boolean algebra, then T is axio-
matizable and atomistic (7' has no atomless formulas). Thus, T has a re-
cursive model [4] and 7 has a prime model. In this paper* we show that
the prime model of T is finite-atomic (see Definition 1.2) and recursive,
in fact strongly computable in the sense of Ershov (see [7]). The prime,
computable Boolean algebras are shown to be the interval Boolean algebras
of computable linear orders. From these results and the results of
Hanf [3] we conclude that if 7 is a complete extension of Ty, then
there is a finitely axiomatizable theory whose Lindenbaum algebra is
the prime (countable finite-atomic) model of 7'.

1. Let #_, denote the language of Boolean algebras with non-logi-
cal symbols N, U, °, 0, 1. The theory Ty of Boolean algebra has the usual
axioms with the exception that we discard the axiom 0 # 1. Thus, the
Boolean algebra :
M={M,Nn,V,%0,1)

is trivial if and only if 0 = 1; otherwise, .# is non-trivial. Henceforth,
we will use the same symbol to denote a structure and its universe.
If # is a structure for &#_,, we make the usual definitions. For
a,be 4,
a—b =and®, a+b=(a—-bub—a),
a i8 below b if and only if @ < b if and only if anb = a; #|, is the Boolean
algebra generated by {be # |b < a}. I(#) is the ideal of .# generated

by the set of all atomic elements and atomless elements. The Boolean
algebra .#, is defined for each non-negative integer » as follows:

My = M, ‘/,{n+1 = "I{n/I("l{n)

* This paper is a revision of a part of the author’s doctoral dissertation written
under the supervision of Professor George Nelson, to whom the author is grateful.
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with @ = b in #, +1 if and only if a+beI(#,). The elementary charac-
teristic of a Boolean algebra #, denoted by EC(.#), is an ordered triple
{m,m, 1> such that

min{r| #,,, is trivial} if it exists,
) otherwise,

sup {r| #, has at leagst r atoms} if » < w,
0 if n = o,

0 if n < w and 4, has no atomless elements or if n= w,
|1 otherwise.

We say # is an r-level Boolean algebra if EC(#) = {n,m,l) and
r < n. The elementary characteristic of an element a, denoted by EC(a),
is defined to be EC(.#|,).

The following definition gives abbreviations for certain important

formulas of #_,.
Definition 1.1. (i) I_,(x) is the formula = = 0.
(ii) 4,(x) is the formula

~I,_ (@) A ) Lo ((GO2) +Y) > Iy (@+9) v L1 (9)].
(iii) AL, (z) is the formula
~I,_y (@) A () [Ty ((y02) +y) > ~ A, (y)].
(iv) AT,(z) is the formula
~, (@) A () [Ty (902) +y) > ~ AL, (y)].
(v) I,(z) is the formula,

I, \(@)vAL,(2)vAT,(2)v (3y)(32) [AL, () A AT, (2) AL, (& +(y2))].

(vi) # =, v is the formula I,(z4y).

An element of a Boolean algebra which satisfies the formulas I, (),
I,(2)A ~I1,_ (x), Ap(z), AL,(x) or AT, (x) is called an n-level element, an
n-element, an n-atom, an n-atomless element or an n-atomic element, re-
spectively.

We introduce new unary relation symbols I*,, I,, Ay, AL,, AT,
for each n > 0. New languages %, for i > —1 and 0 <j < 8 are defined
inductively as follows: ‘
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For n > 0,
Lo =%_1y ZLu11 =21V}
Loty =Ln11V{4r}y ZLoors = ZLn1.V{AL}},
PLpo =Ln1 VAT, Loy = U Zno-

n<o

If T is a theory of Boolean algebras in &_,, then Ty _ is the theory
in #,, obtained by adding — as axioms — the sentences equatmg each
new unary relation in %, , with its corresponding formula of &_,.

Ershov [2] has shown that a theory T is a complete extension of
Ty if there is an ordered triple (n, m, !> such that the models of T are
precisely those Boolean algebras .# for which EC(.#) = {n,m,1); for
convenience, we denote 7' by <{n,m,1>.

Definition 1.2. Let .# be a model of {(n,m,Il). For n < w, A i8

finite-atomic if and only if
(i) for every k < n, every k-atomic element of .# is the finite union

of disjoint k-atoms;

(ii) for every n-atomic element a, either a or a® has at most finitely
many disjoint n-atoms below it.

For n = w, A i8 finite-atomic if and only if .# satisfies (i) and

(iii) for every w-element a there is an integer k such that a° is a k-ele-
ment.

The following results are useful (Lemma 1.1 is due to Ershov [2]).

LeEMMA 1.1. Let # be a Boolean algebra, m a mon-negative inleger,
and a € #. Then

(1) V/{%vlllax'/llac; ‘

(i) AN = (M) /I( M) X (M) /I(A] ).

LEMMA 1.2. Let # be a model of {n,m, Do, where —1 <r < o and
0< 3. Let {a,,...,a,} and {by,...,b,} be sets of disjoint elements of
M such that U a;, = U b; =1 and, for each 1<j<s, a; and b; satisfy the
same unary relations of &, ;. If A", and A", are the subalgebras of # generated
by {ay ..., a,} and {b,, ..., b,}, respectively, and h : /'~ N, is defined by

h( L_Jlak‘) = .L'Jlbk"

then b is an 2, isomorphism.

LEMMA 1.3. Let # be a finite-atomic Boolean algebra. Let a,b € A
be such that EC(a) = EC(b). If ¢,,c, € #, a = ¢,Ue, and ¢,Nec, = 0,
then there are elements d,, d, € # such that

b =d,ud,, d,ndy=0, EC(d)=EC(e,) and EC(dy) = EC(c,).
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2. If L is a linear order with first element a, and last element b,,
then the interval Boolean algebra of L, denoted by %, is the Boolean
subalgebra of the power set of [a,, b,) generated by {[z, ¥)|z,y € L, x < y}.
The Boolean algebra #; has the following useful properties:

PRrOPOSITION 2.1. Let L be a linear order with first and last elements.

(i) An element ¢ i3 an atom of B, if there are elements a, b € L such
that b is the successor of a and ¢ = [a, b) = {a}.

(ii) If [a,b) € B, i a dense linear suborder of L, then [a,b) is an
atomless element of & .

(iii) Every c € #; has a unique representation as a umion of intervals
(@1, 0,)y ...y [@,, ],), where a, < b, <...<a,<b,.

Example 1. Let L be the linear order

{1,1),(2,9)ly @},

where order is defined lexicographically and @’ is the linear order of the
rational numbers with first element a, and last element a,. Since (2, a,) € L
is the only successor in L and [(2, a;)y (2, a,)) is a dense suborder of L,
we see by Proposition 2.1 that EC(#.) = (0,1,1). Thus, %, is count-
able and finite-atomic. Since @’ is a computable linear order, we see that
EC(a) can be determined effectively. By the model completeness results
of Ershov [2] we conclude that £, is strongly computable (satisfaction
in B; is decidable).
Example 2. Let L* be the linear order

{(1,1, a,), (2,2,9), (2, ay a;) | ?/EQ" ifao,<z<a,yel, if v = aq,},

where order is lexicographic, @'’ is the linear order obtained from @’
by adding the element a, as the predecessor of a,, and L, is the linear

order
{A/m,z)|x €@, n is a positive integer}

with lexicographic order. It follows easily from Proposition 2.1 that
neither of the elements

a =[(1; 1’1)7(2’01, (1702))) or b =[(2’a17(1’az))’(2702902))

is in I(%;..); in fact, a is a 1-atom and b is a 1-atomless element. Thus,
EC(%..) = {1,1,1) and, as in the case of #,, #;. is countable and finite-
atomic. Since "’ and L, are computable linear orders, it follows, as
in Example 1, that #;. is strongly computable.

It should be noted that L* can be obtained from L in the following
way: Replace each successor in L by a suborder isomorphic to L, and
replace each element in a dense suborder of L by a suborder isomorphic
to Q”’. The effect of this process is to change each 0-atom of #, to a 1-atom
in #;. and each 0-atomless element in &, to a 1-atomless element in #;..
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By this process we will obtain countable, finite-atomic, strongly com-
putable Boolean algebras of each elementary characteristic.

3. Definition 3.1. Let L be a linear order. L is a special linear
order if and only if L satisfies the following conditions:

(i) If b < d in L and b is a successor, then there are elements ¢, f € L
such that b < e < f < d and [e, f) is a dense linear suborder of L.

(ii) The first (last) element of L, if it exists, is not a predecessor (suc-
cessor).

Elements a and b in L form a predecessor-successor pair (p-s8 pair)
if a<b and [a,bd) = {a}.

We recall that if L and K are linear orders, then L + K is the linear
order on LUK which extends L and K so that all elements of L precede
all elements of K. The following results are clear from Definition 3.1.

LemmA 3.1. (i) If L and K are special linear orders, then so 18 L+ K.

(ii) If L is a special linear order, a, b e L and [a, b) i8 non-empty, then

(a) [a,d) is finite if and only if [a,d) = {a},

(b) [a, d) 18 infinite if and only if there are elements a <<c<d<b
such that [c, d) is a dense linear order.

For each linear order L we define the following partition of L:

4}, = {x|x is a predecessor or a successor and z is not the first or
the last element of L},

43 = {z|x ¢ 4, and z is neither the first nor the last element of L},

43, = {x|x is the first or the last element of L}.

We use this partition to define a new linear order L* called the spe-
cialization of L.

Definition 3.2. Let L be a linear order. We define the specialization
of L, denoted by L*, to be the linear order

{(a, ®), (b,9),(cyc)|a e A;, and x e Ly, be 47 and y €Q", ¢ € 43},
where order is lexicographiec.

This definition yields the following result which allows us to define
special linear orders inductively.

ProPOSITION 3.1. Let L be a linear order. If L 18 countable, special,
or if L has the first (last) element, then L* is countable, special, or has the
first (last) elemenmt, respectively.

The following result is the tool needed to define the countable, finite-
atomic Boolean algebra for each theory {n,m, l).

THEOREM 3.1. Let L be a special linear order with first and last elements.
There is an epimorphism h : B;. — B, such that ker(h) = I(#..). Hence

Bre[ker(h) =~ A,

and if BEC(#) = {(m,m, 1), then EC(#..) = (n+1,m,1l> for 1< n < w.
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Proof. We define 4 : 8. — #,, as follows: If ¢ € #,. and

£J1 [(a,-.l, a;2) (bs1y bi,z))

is its unique representation, then
n
hic) = ‘L__Jl (@15 bi1)-

It follows from Proposition 2.1 (iii) and Definition 3.2 that k is an
epimorphism.

To prove that ker(h) = I(%;.) let ¢ € ker(h); it is sufficient to assume
that.c = [(a,, @3), (b, by)). By the definition of &, ¢ € ker(h) if and only
if @, = b,. Since a, cannot be the first element of L, a, € 4], or a, € 43.
If a, € A}, then there are integers n and m such that a, = (1/n, #) and
b, = (1/m, y). By the definition of L*, ¢ can have at most finitely many
p-8 pairs in L*. Thus, ¢ has at most finitely many atoms below it (Propo-
sition 2.1 (i)) and ¢ € I(#5.). If a, € 4}, then [(a,, a,), (by, b,)) is order
isomorphiec to a subinterval of Q’’. In this case ¢ has at most one p-s pair
and, as in the previous case, ¢ € I(%.).

Let ¢ = [(ay, as), (b1, bs)) € I(BL.). It follows from Lemma 3.1 (ii)
and Proposition 2.1 that #;. has no atomic element with infinitely many
atoms below it. By Definition 3.2 it is clear that a, = b,. Since &(c)
= [a,, b,) and a, = b,, we have h(c) = 0. Therefore, ¢ € ker(k). We
conclude that ker(h) = I(%;.).

It now follows that %;./ker(h) ~ #,. Since ker(h) = I(%B..),

gLo/I(gLo) [ QL‘
Thus, if EC(#,) = <{n,m,1l> and 0 <7 < w, then
EC(ZL) ={n+1,m,1l).

The next lemma follows easily from Definition 3.2, Proposition 2.1 (iii)
and Lemma 1.1.

LEMMA 3.2. Let L be a special linear order with first and last elements.

(i) If L s countable, then so i8 RBj..

(ii) If B is finite-atomic, then 80 is Bj..

Definition 3.3. Let L be a linear order and »n a positive integer.
The linear order L™ is defined inductively as follows:

(i) L' = L*,

(11) L(n+l)‘ — (Ln')*.

COROLLARY 3.1. Let s be a positive integer and let L be a countable,
special linear order such that B is finite-atomic and EC(&;) = (n, m, ).
Then L* is a countablé, special linear order and B qo 18 countable, finite-
atomic and

) EC(# ) = (n+8,m,1).
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4. We are now in a position to define, for each theory {(n,m,1),
a countable, finite-atomiec, strongly computable Boolean algebra, which
we will denote by 4, ,, ;- We define &, ,, ; to be the interval Boolean algebra
for a countable, special linear order L, ,, ; determined as follows:
(i) For 1<m< w,Ly,,i8 {r|l0<r<m, r an integer} with the
usual order.
(ii) For 0 < m < w, L, ,,, i8 the linear order

{(ry2)|]0 <r<m+1,r an integer, z € Q'}

with lexicographic ordering. L, .., = (Lynm,)" for 0 <z < .
(iii) L, ,,, is the linear order

{(r,0), (0, 2)|1<r < w,r an integer, z € Q'}

with order defined lexicographically.
(iv) For 0 <m < w, L, ,, , is the linear order

{(0,0,0),(r,1/s,x)|0<r<m,l<s< w,r and 8 are integers, x € @'}
with lexicographic ordering. For 1 < n < w we put

Ln.m,o = (Ll.m,o)("_l)"
(v) We put

Ll,w,l = Ll.m,o + (Lo,o,l):.I
and

Lyoy = (Ll,m,l)(n_l)‘ for 1<n< w.

Since @', @'’ and L, are computable linear orders, each linear order
L, .1 defined above is computable. It is also clear that if a € #,, ,,;, then
EC(a) can be determined effectively. We conclude that £, ,,;is strongly
computable. By Lemma 3.2 and Corollary 3.1, #,.m,1 18 countable, finite-
atomic and has the elementary characteristic (n, m, l).

Finally, we define %, , , to be the weak direct product of

{#n,1,0/m 3 non-negative integer}.

The fact that %,,, is countable and finite-atomic is clear. Since
each 4, ,, is strongly computable and since each element of #,,, has
only finitely many non-zero coordinates, we see that #,,, i8 strongly
computable.

We summarize the results of this section in the following:

THEOREM 4.1. For each elementary characteristic {n, m, 1> the Boolean
algebra &, ... 18 countable, finite-atomic and strongly computable.

5. In this section we show that the atomic models of the theory
(n,m,l) are precisely finite-atomiec.
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LEMMA 5.1. Let # be a finite-atomic model of <{m,m, l),, Let
{ay, ..., a,} and {b,, ..., b,} be sets of disjoint elements of A such that Ua‘
= Ub._- =1 and EC(a = EC(b,) for each i € {1,...,8}. Then (a,, ..., a;)
and (by, ..., b,) satisfy the same formulas of £, , in .//{.

Proof. Clearly, a; and b; satisfy the same unary relations of %, ,
in .#. The proof is completed by induction on formula complexity using
Lemma 1.2. The only difficult step is that involving the existential quan-
tifier.

Suppose that y(z,, ..., z,) is the formula

(Awo) ¥ () -+ .y @)
and a, € # is such that (a,, ..., a,) satisfies y in #. Let ¢,, ..., c, be the
atoms of the subalgebra of .# generated by a,,...,a,. For each :€{0,...,8}
there is a term o;(z,, ..., ,) of &, , such that a; = o;(c,, ..., ¢,). Using
Lemma 1.3 choose elements d,, ..., d, such that

EC(d,) = EC(¢;) for te {1,...,2} and b, = o(d,,...,d,).
Since (¢,, ..., ¢,) satisfies

V(Uo(wl’---’mv)i“-10’3("1717---’“’:,)) in #,
(d,, ..., d,) satisfies the same formula in .# by the inductive hypothesis.
Thus, letting '
by = 0o(dyy ..oy dy),
(boy ..., b,) satisfies y(=,, ..., x,)in # and (b,, ..., b,) satisfies the formula
(3z,)y (2o, ..., x,) in 4. The converse is proved similarly.

THEOREM 5.1. Let T be the theory {m, m,1> and # a model of T. Then
M i8 an atomic model of T if and only if M is finite-atomic.

Proof. If .# is not finite-atomic, then there is an element b € .#,
which is k-atomic for some k < n, such that.b and b° have infinitely many
k-atoms. Then b satisfies a non-principal 1-type of 7. Thus, .# is not an
atomic model of 7.

Suppose that .# is finite-atomic and (a,, ..., a,) is an s-tuple of ele-
ments of .#. Let p be the s-type of T satisfied by (a,, ..., a,). We show that
P is a principal s-type.

Let A be the set of all terms z(z,, ..., %,) in Z_, of the form

 J
Uoi(a,,) forvefl,...,s} and 1<k <...<k,<s
i=1

where o;(x) is either x or 2°. Let 7,, ..., 7, be an enumeration of /. Since
A i8 finite-atomie, it is clear that there is a formula ¢,(z,, ..., ;) which
specifies the elementary characteristic of ;(a,, ..., a,) (or, if necessary,
7i(ay, ..., a,)°%). Let Q(z,, ..., z,) be the formula

Pr(@ry ooy BIA ooo AG(Ty .y T,).
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If (b,,..., b,) is an s-tuple of elements of .# satisfying Q(z,, ..., z,),
then it follows from the definition of Ty , and from Lemma 5.1 that
(@ ...y @) and (b,, ..., b,) satisfy the same formulas of %_,. Thus, by
the completeness of 7', p is a principal s-type generated by Q(z,,...,,).
We conclude that .# is an atomie model of 7.

COROLLARY 5.1. The prime model of <m,m, 1> 8 &, ...

COROLLARY 5.2. For each B, ., there is a finitely awiomatizable
theory whose Lindenbaum algebra is isomorphic to &, ., ;.

Proof. Hanf [3] has shown that if B is a recursive Boolean algebra,
then there is a finitely axiomatizable theory whose Lindenbaum algebra
is isomorphic to #. It is clear from the definition of %, ,,, that since L

n,m,l

is computable, a Boolean algebra # can be defined so that # ~ &, ..,
the universe of # and the relations N, U, ° are recursive. Thus, there is
a finitely axiomatizable theory whose Lindenbaum algebra is isomorphic
to B,m,1-
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