COLLOQUIUM MATHEMATICUM

VOL. LV 1988 FASC. 2

OPTIMAL BOUNDS FOR EXPONENTIAL SUMS
IN TERMS OF DISCREPANCY

BY

HARALD NIEDERREITER* (VIENNA) anp JOZEF HORBOWICZ (LUBLIN)

1. Introduction. Let x,, ..., xy be real numbers and let

l N
D = Df(xy, ..., xw) = sup I 3 ai({xa})—t
o<r<t n=1
be their discrepancy, where x, denotes the characteristic function of the
interval [0, 1) and {u)! = u—Lu] is the fractional part of the real number u. It
is well known that the exponential sum

N

Y e(xy) with e(u) =e*™*
1

can be bounded in terms of D¥. It was shown by van der Corput and Pisot
[3] that

1 N
N "gl e(x,)| < 2rnD%.
In the book of Kuipers and Niederreiter [1], p. 143, this was improved to
1 N
(1 Y e(x,)| < 4Dy.
N n=1 !

In fact, 4 is the least constant such that (1) is valid for all N and for all
Xy, ..., Xy (see [1], p. 163, Exercise 5.34). ‘

This still leaves open the possibility of replacing 4 by a smaller constant
that may depend on N. For fixed N, the least constant cy such that

< cy DY

* The first-named author is grateful to the University of California at San Diego for its
hospitality during the period when this paper was written.
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holds for all x,, ..., xy is given by
N

Y e(x,)

In=1

1
2 Cy = Su
2 N U ND%(x1, ..., xn)

The problem of determining cy was raised by Kuipers and Niederreiter [1].
From (1) and the remark following it we get

cvn<4 and Ilimcy=4.

N—-wo
The example x, = ... = xy =4 shows that cy > 2. The only known values of
cy are ¢; =2 and
4sin nx

=211...

€= osn:gxl/z 1+2x
(see [1], p. 160, Exercises 5.8 and 5.9). The problem of determining the exact
value of ¢y for large N appears to be quite difficult. In this paper we
establish lower and upper bounds for ¢y which show that 4—c, is of the
order of magnitude N~ 23,

THEOREM. For all N >3 we have
4—10N~2B L cy <4-2N"23,

It will become apparent in the proofs that the coefficients 10, respective-
ly 2, of N2 can be improved for sufficiently large N.

A question related to that of determining cy was studied by Montgome-
ry and Niederreiter [2]. Some of the results of this work are useful for
establishing the upper bound in our theorem. The problem considered in [2]
is to determine, for fixed N = 2, the least constant dy such that

% f: e(%+0,.)

n=1

)

< dyK

holds for any 0 < K <4 and any N numbers 0,, ..., 0y with |0,| < K for
1 < n< N. The following formula was obtained in that paper:

4rn
W for N even,
(4) dN = 21t
———— for N odd.
Nsin(n/2N) or N od

The present paper is organized as follows. In Section 2 we prove the
lower bound for cy, and in Section 3 the upper bound. In Section 4 we
describe an alternative method of obtaining an upper bound for cy. This
method yields a somewhat weaker result, but it does not rely on the work of
Montgomery and Niederreiter [2] and it contains some features that may
be of independent interest.
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2. The lower bound. Since cy > 2 for all N and since 4—10N~%3 < 2 for
N < 11, we can assume N > 12. We recall the following explicit formula for
Dy given in [1] (p. 91): if
0<x1€x2S cee st<l,

then

1 2n—1
. _ — )
5) Dy 2N +1?3st lx,, 2N |

We first consider the case where N is even. Let k be an integer with
1 <k < N/2 that will be determined later, and let 0 <& < 1/(2N). Put

0 for 1 <n<k,

(n—k)/N for k+1 < n< N/2,
=" (n+k—1)/N for N2+1<n< N—k,

1—¢ for N—k+1<n<N.

Using (5), it is easily seen that
(6) D} =k/N.

Furthermore,

N (N/2)-k n (N/2)—-k n

Yex)=k+ Y e(——)-i- Y e(———)+ke(—s)

n=1 n=1 N n=1 N
N2~k opp

=k+ke(—e)+2 Y cos—,
=1 N

and so (2) and (6) yield

.

1 N2k 2mn
c~>7‘-lk+ke(—s)+2 ..;1 cos —

Letting ¢ =0+, we get

20Nk my
= - —_—
CN 2+k "; cos —

Standard trigonometric identities yield

W2k 2nn_ sin((2k — 1) n/N)—sin(n/N)
”; sy = 2sin(n/N) ’

and so
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sin((2k—1)n/N) 1
ksin(/N)  k

C~/2

Using sinx = x—4 x3 for 0 < x < &, we obtain
1 4n3 k?
N sm(n/N) N sm(n/N) " 3N3sin(n/N)’

3n n ”3_|
k [Zn( +3smN) s

where [ u'] denotes the least integer > u. It is easily seen that 1 < k < N/2 for
N > 12. Since

0) ey =2+

Now choose

N [3n om\3
<_ —_
k 21t(N+3smN) +1,

we get from (7) after some simplifications

=2+ 2 r (3—n+ 3 sm N
N2 ST Nsin(n/N)  Nsin(r/N)\N N
4n? (3 +3sm n\'3 4r’
"~ 3NZsin(n/N) N 3N3sin(n/N)

”t 2n n (6_1t)
Nsin(rn/N) Nsin(n/N)\ N

4n? (_62) _ 43
3N32sin(n/N) \N 3N3sin(1t/N)

" (o—(em3 N-U3 _ 13 n-4p3 4%
+Nsin(n/N)(z (61)2° N (6) N N
+m (2—(61'[)2/3 N-23 —%(61!)”3(12)-2/3 N—2/3

_4L(12)—4/3N 213)

T

_—_(2-1 -2/3 >4- -2/3
+Nsin(gt/N)(2 ON~4°)>4—-10N

for N > 12. This proves the lower bound for even N.
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For odd N we let k be an integer with 1 <k <(N—1)/2 and let 0 <&
< 1/(2N). Put x4y, =1/2 and

0 for 1 < n<k,
. = (n—k)/N for k+1 < n<<(N-1)/2,
" (n+k—1)/N for (N+3)/2<n< N—k,
1—¢ for N—k+1<n<N.

From (5) we get again DY = k/N. Furthermore

N (N-1)/2)-k n (N-1)/2)-k n
Y e(xp=k+ Y e(ﬁ)—n ) e(—ﬁ)+ke(-e)

n=1 n=1 n=1
WN-1-k  opp
=k—1+ke(—e)+2 Y cos-%,
n=1

and so, with ¢ = 0+,

1 20—k ooy
en=2—-+- Y cos—.

k k.= N
Now
(N-1)/2)-k : —i
Z cos 2nn _ sm(2k1t/.N) sm(n/N)’
g N 2sin(n/N)
and so

sin(2kn/N) _g
N ST sin(/N) k'

Using sinx > x—3x? for 0 < x < n, we obtain
2n 4n3 k? 2
? 2+ N - 3 . -7
Nsin(n/N) 3N°sin(n/N) k

CN

S 24 n 4n3 k2 _1( T +1
=~ %7 Nsin(n/N) 3N3sin(n/N) k\Nsin(x/N) )

This is the same lower bound as in (7). We choose k as before and note that
1 <k <(N-1)/2 for N > 12. The earlier calculation yields then the desired
lower bound for odd N.

3. The upper bound. Since both D} and the exponential sum in (2) only
depend on the fractional parts of the numbers x,, ..., xy and since the order
of the terms is irrelevant, we can assume that

0<x;, <x,€... <xy<l1.



360 H. NIEDERREITER AND J. HORBOWICZ

Put
2n—1
= X,— <n<
0, =x, N for 1<n<N
and note that (5) implies
1
8 0, < Df—=— =: <n<N.
(8) |0, < D¥ N K for1<n<N
Also
N 1 N (n
o) |2e(x,)| > 3 (0 m-a0)| - ..;e(ﬁ“’")Q'

We distinguish now various cases depending on the values of DY and N.
In the first case we consider D% <4 N~'3, Then

1
K = Df—55 < (1-N~*%)Dg,

and so (3), (4), (8), and (9) yield

l Z e(xy)| = 1 ﬁ (" +6 <—4"—(1—N'2/3)D*
N.=, X N2 \N )|~ Nsin(n/N) N
Using sinx > —%x’ for 0 < x < n, we get
2
*|z e(x ﬂ)l ( _7) (4_4N-2l3)~
N n=1
Now
2 2n?
4 — -2/3 _K_ 4— -2/3 _
(#-2N )(1 6N2> 2N 3N?
P PP -
>4-2N"2% -T3 I3N-23 > 4_4N~23
for N >3, and so
ND:, |,§ e(x,)] <4-2N"%2,

The following argument applies whenever D% < 4. If N is even, then by
(9) and a result of Montgomery and Niederreiter [2] we have

N /1 1
|n§le(x,.)| <F (ZN) 2LKN+2J
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L (sn2esin (2w )
—_ KN+-3-1
+sin(n/N)(sm21tK+smN 2 :+-2

1 T
= *____ 2{ND% -1
2LND} I+ (/ (sm21t(D 2N)+smN( ))
®__ 1 1~ ¢ *I_
_ IND%+ sin 2n(D%—(2N)~ )+s1nrtN (2{ND} U-—Z{ND,’Q‘,}.

. sin(n/N) sin(n/N)

Now consider the function

sintN~1'(2x—1)
= —_ < < 1.
g(x) sin(/N) 2x for0<x<1

For 0 < x <4 it is clear that g(x) <0. For $ <x <1 we have

n(2x 1) n PP
g(x) < Nsin(UN) SE(ZX-I)—2X—(1! 2)x 2&0.
Therefore
> ., sin2n(D—-(2N)7")
(10) '..; e(x,)| < 2ND%+ Sn(N) .

If Nis odd and K > (4N)~!, then by (9) and a result of Montgomery and
Niederreiter [2] we have

|): e(x,)| < Fx(0):=2LKNJ+1

1 n
in 2nK +sin—(2 ‘KN —
+si (/N)(sm21t +sin—(2 KN} l))

o gL o
1 1 T 1
i — D ——>—1
+sin(1t/N)(sm2n(D~ 2N)+smN(2{N ¥ 2} ))

_ sin2n (DY —(2N)™1) ({ ‘_1)
= ND+ e+ ({NDE -3¢ )

Using g(x) <0 for 0 < x < 1, we get again (10). Therefore (10) holds when-
ever D% <3, with the additional condition K > (4N)~! for odd N.

In the second case we consider 4 N~1/3 < D% < 4. Note that this case
applies only for N > 9 and that the additional condition K > (4N)~! for odd
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N in (10) is automatically satisfied. It follows from (10) that

sin 2nD¥
< - .
ND7 L2, 0 < 24 e

Since the function (sin 2nx)/x, 0 < x <4, is decreasing, we obtain

. -1/3
R i
Using
1, 1, 1
x—gx <smx<x—3x +mx for 0<x<mn,
we get

sin N~ 1/3 Nz’3 (n%/6)+(n*/120) N~ /3
sm(n/N) 1—-(n2/6) N~ 2

Now

23 (1 n’ N-2 N-23> N¥3_1 7‘2N 43 n* N-23
Ni_yf1-L _I > I N-es I N-
NT=D{1-% ) 120 . 6 120

n? n* n?
>N3_1-Log-an_Z _g-235 Nu3_T
=N ! 6 120 6
and so
singN 13 <N¥_1
sin (rt/N)

It follows then from (11) that

IZ e(x)| <4-2N"3,

*
N

In the third case we consider $ <D} <3 and N > 6. Note that the
additional condition K > (4N)~! for odd N in (10) is then automatlcally
satisfied. From (10) we get

1 4

< LI S —

ND* I,,g,e(x")l 2+ NDrsinwN) < 2t Non@m)
4

—————— <4-2-6"Y3 g4 -_2N"23,
+6sin(1t/6) 2:6 4-2N
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<D%<}and N <6. If N =3, then

In the fourth case we consider
K =D}§-t < 4D},

and so from (3). (4). (8), and (9) we get

IZ e(x)| S5 <4-2-3" =4-2N"23,

ND"‘
For N = 4 we note that D} < -§°4‘ 13 was already treated in the first case, so
that we can assume D% >4-47 '3, From (10) we get

N 1
| X eCl < 24 oy < 2+ Ssn )

1 413
DLD; n=1
<4-2-4"¥3 =4_2N",

For N =5 we use the same argument as for N =4.
In the last case we consider D% >4. Using the trivial bound for the

exponential sum, we get

IZ e(x,)|\ \2 4-_2N"23,
n=1

D%
N

Thus in all cases we have

ND.IZ e(x)| <4—2N"22,

and so (2) yields the desired upper bound for cy.
4. An alternative method. We present an alternative method of establish-
ing an upper bound for cy that is based on the following variant of a
well-known inequality of Koksma (see [1], p. 143, for Koksma’s inequality):
LemMma. If f is a continuously differentiable function on [0, 1] and
b I Xy are numbers in [0, 1) with discrepancy D%, then

1 N 1
N L fix)=[f0Od]|<

R 17}
(DN——) L7 e+ (7 )

Proof. We can assume that x; < x;, <...< xy. Put x=0, x5,y =1,

and
gy(t)=t—n/N for x, <t <x,4y,n=0,1,...,N,

also gy(1) = 0. We note that
D% = sup lgn(1)l.

ost<1
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By (1], p. 143, Lemma 5.1, we have
1 N 1 1
(12) N X Jx)=[f(Odt = [gn() [ () dr.
n=1 V] 0
Write again K = D§—1/(2N) and put

hy(t) = max (0, lgn(t) —K) for 0<r<1.
Then

1
Z S (x)— ff (de| < iElem(t)l Lf" (@)l dt

n=l

1 1
=K [If' Odt+ [(lgn @I = K)|f (1)l dt
(1] 0
1 1
SK(If'Olde+ [hy@)1f ()l de
0 0
1 1 1
< K [If O de+([ B3 (0 de) 2 (§ (1 () de)'">.
0 0 0

The set H = {t€[0, 1]: hy(t) > 0} can be divided into at most 2N intervals
on each of which hy(t) is a linear function of slope +1. Hence

1/(2N)

j‘h (t)dt = jhz(t)dt 2N j t2dt =

12N%’
and the Lemma is established.

CoroLLArY. For any real numbers x,, ..., xy with discrepancy D% we
have

| G . n\1
N L, et < 4Dk (2‘73)ﬁ'

\

Proof. We can assume that 0 < x, <1 for 1 <n < N. For a suitable
real 6 we have

l N
N Z e(xy)| = Z e(x,—0),
n=1 n=l
and taking real parts we get
1y | 1x
(13) N”;e(x,,) =~ g cos 2n(x,—0).
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Applying the Lemma with f(¢) = cos 2n(t —0), we obtain

( Dy 2N)-“f () dt + N(:‘;(f’(t))zdt)”z

= 4D;:=,-( -—/(_S)%.

\

N

1.
N ngl e (xn)

We establish now an upper bound for cy. Let a > 0 be a real number to
be determined later and consider first the case where D% < aN ~'/3. Then, by
the Corollary,

m\ 1 T \,-t n-23
< e N .
ﬁlngl el <4 ( \/E)ND"l - (2 ﬁ)a

Next we consider the case where aN~ > < D% < 4. By (12) and (13) we
get, with D = D% and f (t) = cos 2nt(t —0) for a suitable 6,

(14)

l z e(x,,)

(15) N &

N 1
x T S = a0 £ 0
Ilgn(t)l |f'®Nde = D Hf (Olde+ I(Igu(t)l-D)If (o) d

=4D-2n _[(D‘— lgw () Isin 2n (t — )| dt.
0

We note that there exists an interval [¢,, ¢t,] =[O0, 1] such that t;—t; =D
and either

—lgn@l =t—t, for all te(ty, t,y)
or

—~lgn@®)| = D+t,—t for all te(t,, t,).

With a suitable change of variable we obtain
1

(16) {(D—Ign(®)l)Isin 2m(t —0) dt > j'tlsm 2n(t—p) dt
(1]
for some real . With b = 1+\/§ we get
D @® p~k+1p
(tisin2rn(t—P)ldt =D Y b™* [ |[sin2n(c—p)ldt
0 k=1 b—kp
® 2(b—1)b"‘o
DY b [ sin2mrde
k=1 0
D -}
— Z “*(1—cosn(b—1)b~* D).
TC =
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Since D <4, we have n(b—1)b"*D < 4, and so we can use

x? x? 13 2
- —(1-=)=>=x? <x<:.
l—-cosx > 2 (1 12) 27x for 0 < x 3
This yields
b 13n had 13n .
tlsin2n(t—B)|dt =~ (b—1)2D* ¥ b~* =% p*
;E 27 .; 27(2./3+3)
Together with (15) and (16) we get
1 X 26n?
e(x,) S4————— (D> <4—(147)a> N~ 23,
wog | £, 2 <40 J3ey (

Equating this bound with the one in (14), we find the optimal choice

e (2-(n/J6) )"’
147 '
This yields
1
ND},

N
|y e(x)| <4—(09)N-%3
n=1

whenever D% < 4. For D% > § we use the trivial bound for the exponential
sum to get
- 1 -2/3
ND% I..; e(x)| < Dz SISA-OHNT,
and so by (2) we have the upper bound

ey < A—(09)N-23.
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