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1. Introduction. The order of normality o(f) of a function f mero-
morphic in D = {jz| < 1} is defined by

o(f) = If:lelg(l—Izl’)f“"(z), where f* = |f'|/(1+]f1?)

(see [6]); f is normal in D if and only if w(f)< + oo ([2], Theorem 3).
Let # be a family of meromorphic functions in D, and let

o(F) = supow(f);
JeF

thus, it is clear what is meant by w(#’), where
F' ={f;feF}.

Let & be the family of functions f meromorphic and univalent in D
and such that

f(2) = a_z" ' +a,+ae+ ..., zeD,

where a, = a,(f) (n > —1) are complex constants. We shall investigate
o(F) and o(F') for some subfamilies # of <.
Let S be the family of all holomorphic members of &:

8 = {feZ;aa(f) =0}.

Piranian [3] proved that «(8’) = 3. Therefore, a natural question
arises:

1.1) o(#')< +oo?
We shall show among other things that (1.1) is answered in the
negative. For each k> 0 we now set
e = {f € L5 l0ay (f)| > K},
to propose ’
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THEOREM. We have

(1.2) w(F) = +oo  for each k= 0.
Furthermore,
(1.3) o(FL,) = + o0,
while for each k> 0
(1.4) b(k) < o(F}) < 6(k) < + oo,
‘where
b(k) — 3k+10

wri ‘YT

Since &' = &,U8’, it follows from (1.3) that w(&’) = + oo or (1.1)
is answered in the negative. However, w(g) < + oo for each ge ¥’
For the proof, we choose f e & with g =f'. Then f is normal (and uni-
valent) in D. According to [6] (p. 141-142, Remark), f' is normal in D,

whence w(g) < + oo.
We note that w(S) = + oo is easily proved. For the proof we consider

Jou(2) =n2,2€eD,n =1,2,... Then f, €8 with
®(8) > o(fa) = f(0) =n — + oo,
2. Proof of the Theorem. To prove (1.2) we set p = 1/sin(a/2) for
0<a<m and
fr(2) = (E+1)p(1+p2)/[2(2+p)]
= (k+1)[~'+(p—2~Y)+...], zeD.

Then f, maps D one-to-one onto the extended plane C* = {|z| < + oo}
slit along the circular are

{(k+1)pe*; —a<t< a}
(see [4], p. 14-15, Example 1.3, with a few modifications). Since
fol=p7) =0 and f(—p7") = (k+1)p*/(1—p"),
it follows that
o(fg) = 1 —p~)fF (—p7") = (k+1)p* > + o0
a8 a — 0. Since f; € &, We have
W(Fy) = +oo  (k>0).
For the proof of (1.3) we set
fa(2) = a2(z+2"Y) /(a2 -1), O0<a<1l, zeD.



Since f, € &, with
fal@) =1 and  f;(a) =2/[a(a®-1)],
it follows that
o(fs) = 1 —a)f#(a) =a™' > + o0 '

as a > 0. We thus obtain (1.3).

For the proof of (1.4) we need a lemma, where A(g) = ¢’’/g’ is used
for ¢ meromorphic in a domain in C*.
LEMMA. For each g € & with a_,(g9) = 1, we have the estimates

(2.1) (1 —I2I?)l2A(g9) (2)] < 10 —4[2*, e eD;
(2.2) 1—2]2< 2%’ (?)|, =zeD.
To prove (2.1) we apply the inequality
(2.3) [wA (F) (1) + (4100]2 —2) [(Jw]2 —1)| < 4{w0]*/(J0]2 1),
1< fw| < + oo,

to F, defined by F(w) = g(w™!). Estimate (2.3) follows from (29) in Theo-
rem 4 of [1], p. 139, by eliminating the terms containing £ and K in its
both sides. Since

A(F)(w) = —w™?A(g)(w™") 207",
it follows from (2.3) with 2 = w™! that
| —24(9) (2) =2 + (4 —2[212) /(1 —[2I?)| < 4/(1 —|2[%),
whence

(1 —212)124(9) (2)| < 8 —2[22+2(1 —[2]?) = 10 —4|=2|?
for ze D.

For the proof of (2.2) we apply to F a part of the Loewner distortion
theorem (see [1], p. 133, (15)):

1 —jw|™* < |F ()]

Then (2.2) follows by setting w™! =z e D.

We now prove (1.4). For each f e &, we set g = f/a_,(f), so that our
Lemma may be applied to g with A(f) = A(g). It then follows from (2.1)
that

2.4) (1 —[2I)IA(f) (2)] < (10 —4[2[*)/|2], =€ D—{0},
whence
(2.8)  (L—1213)f*(2) < 3L —12IM)IA(f) (2)] < (B —2121%)/I2] = o(l2])
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for z € D —{0}. On the other hand, it follows from (2.2) that
k(1 —|2%)/|212 < la_, (NI —121?)/I21* < |f (2)1,

whence

(2.6) I @)L +1f (@)12) < 1/If"(2)] < I=1?/[k(1 —[2I%)]

for z € D — {0}. Multiplying both sides of (2.4) and (2.6) we obtain
(2.7) (1 —J213)f™*(2) < [21(10 —4[2I%) /[ (1 —12]*)] = p(l2l)

for z € D; in effect, f#(0) = 0 since f’ has 0 as the double pole. Now the
function ¢ of |2| € (0, 1) in (2.5) decreases from 4 oo to 3 as |2| increases.
from 0 to 1, while the function ¢ of |2| € [0, 1) in (2.7) increases from 0
to -+ oo as |2| increases from 0 to 1. Therefore

o(l2l) = p(l2]) = e(k) only for |2| = y(k) =Vk/(k+2).
We thus obtain
p(l2]) <e(k) for p(k) <ol <1,
(2.8) .
w(l2l) < e(k) for 2| < y(K).
Combining (2.5), (2.7) and (2.8) we now conclude that
o(f)<c(k), fe,
whence
(&) < (k).
We next consider the function
f(8) = (k+e)(e+2")  (k>0, e>0).
Then f, € &, withf,(3) = —3(k+e) and f, (}) = 16(k+¢). Therefore
(L) = (1 —@P)F(3) =12(k+¢)/[1+9(k+2)*].
Letting ¢ -~ 0 we now obtain
b(k) < o(#3),

which completes the proof of (1.4).
Finally, we propose two problems:
P 1199. What is the precise value of w(%;) (k> 0)2
P 1200. Since w(¥;) decreases as k> 0 increases, it is of interest,

at least, to find
lim ().
k—>+o00
The author wishes to express his i)rofound thanks to the referee for

kind suggestions.
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