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In their work on Fourier series Littlewood and Paley, and in his work
on the boundary values of analytic functions Lusin, introduced the well-
known g and g3, and the area S functions, respectively. In this context,
Marcinkiewicz [4] considered the expression u(f)(z) given by

I 11"(95+t)+1”'(203—t)-21"(-"«')|2 dt

W) = ( ), e,

[0,27]

where F(z) = f[o,z] f(t)dt. The Marcinkiewicz integral u(f)(z) was in-
troduced in order to give an analogue of the Littlewood-Paley g function
without going into the interior of the unit disk for its definition; that there
are similar results along the lines of the S and g3 functions is exemplified by
Theorem 5 below. It was Zygmund [7] who, among other interesting results,
proved that

l(Nllz < eoll fllp, 1< p< 0.

Stein [5] defined a generalization of the Marcinkiewicz integral to higher
dimensions, and proved similar results by means of the so-called real vari-
ables method, in the following setting. Let 2(z) be a function which is
homogeneous of degree 0 and which, in addition, satisfies the following two
conditions:

(i) £2(z) is continuous on X, the unit sphere of R™, and satisfies a
Lipschitz condition of order a there, i.e.,

12(z") = YN < el - y'|*, ',y €X.
(ii) [y 2(z")dz' = 0.

For a locally integrable function f on R™ and ¢t > 0, let Fy(f,z) = Fi(z)
be given by

F¢($)= f Mf(z-y)dy, zeRn’

n-1
iz Y1
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and define now p(f)(z) by
) . 2 1
un@=( J L a)”.

[0,00)
Stein showed that if f € LP(R™),1 < p < 2, then

(1) l(DHllp < cllfllpy 1<p<L2,
and when p =1,

A{p(f) > MY < ellfll, allx>o0.

Benedek, Calderén and Panzone [1] showed that if {2 is continuously differ-
entiable in z # 0, then (1) above holds for 1 < p < 0.

In order to state our first result we set

_ 1/p
M, f(2) = sup (|1 Juwra) =,

where @ is a cube containing z with sides parallel to the coordinate axes; this
is the generalized Hardy-Littlewood maximal function. We put M, f = M f.
We also need the generalized sharp maximal function M# f given by

- 1/p
Mff(z)=2gg(lQl ‘Qflf(y)-fol”dy) ,

where fq is the average of f over . We put Ml# f = M#* and we set
BMO(R™) = {f : ||fll« = ||IM# f|lcc < o0}; by the John-Nirenberg inequal-
ity the expressions ||M¥ f||o all give equivalent BMO norms for a given
function f. »

The first result we prove is

THEOREM 1. Suppose 1 < p < oo, and that ||u(f)llp < kpllfllp- Then
there is a constant c, = c,(k,) independent of f such that

M#*(u(f))(z) < My f(z), forallz €eR™.

Our next result deals with a commutator of the Marcinkiewicz integral,
and for this purpose we take the point of view of the vector-valued singular
integral operators of Benedek, Calderén and Panzone. Let, then, H be the

Hilbert space
H={n:|nj=( [ lh(t—z)lzdt)l/z <oo}.

[00°°)

For each fixed 2 € R", we may view Fi(z) as a mapping from [0, 00) to
H, and it is clear that | Fy(f, z)|| = pu(f)(2).
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For b € BMO(R"), Cy(f)(z), the commutator of the Marcinkiewicz in-
tegral, is then defined as
Co(f)(x) = lIo(z)F(f,2) — Fi(bf,2)|, =z €R™.
We then have ‘

THEOREM 2. Given 1 < r, 8 < 0o, there is a constant ¢ = ¢, , indepen-
dent of b and f such that

M*(Cy(f))(z) < cllbll«(Mr(u(f))(=) + M, f(2)).

Theorems 1 and 2 lead to various weighted LP(R"™) inequalities; we list
some but do not prove them as the proof technique, once we have the point-
wise estimates at hand, is by now well known. '

THEOREM 3. Let1 < p < 00, and w a weight in the Muckenhoupt A,(R™)
class. Then there is a constant ¢ = cp,(w) independent of f such that

Ne(Hllee <ellfllee, 1<p<oo.

THEOREM 4. Let1 < p < o0, and w a weight in the Muckenhoupt A,(R™)
class. Then there is a constant ¢ = c,(w) independent of f and b such that

ICs(llzz < cllbll«llfllLe, 1<p<oo.

Finally, we consider the Marcinkiewicz integrals ps(f) and p}(f) corre-
sponding to the S and g3 functions; they are defined by

2
psH@r = [ E gy,

I(z)
where I'(z) = {(y,t) : |z — y| < t}, and
. 2 _ t o\ R
”’A(f)(z) - R;[l (t+|x—y|) {n+3 dydt,a A> ls

+

respectively. As an indication that the theory in this case proceeds along
the lines of the § and g3, and u, functions, we show a result that includes
the L2(R™) continuity case.

THEOREM 5. Suppose w is a nonnegative locally integrable function in
R™. Then there is a constant ¢ independent of f and w such that

[ B3NP w(E)dz<c [|f(z)*Muw(z)dz.
R® R"

We pass now to the proofs.

Proof of Theorem 1. Given z € R", let Q@ = Q(zo,h) be a cube
centered at zq of edgelength h with sides parallel to the axes. If now Q* =
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Q(z0,4/nh), let
f=Ffxq-+fl-xq@)=hH+ 1,
say. Then
Jur)wPdy < [ p(fi)y)"dy
Q R
<e, [1A@IPdy<c, [If(v)Pdy,
Ru Q-

and consequently,
/
@ 1 [utm)wdy < (1017 [u(m)wpdy)” < epMyf(z).
Q Q

Next, given w € Q, we estimate I = |u(f2)(zo) — u(f2)(w)|. From the
inequality

| |1 F2(f2, o)l = | Fe(fo, W)l | £ |[Fi(f2, o) — Fi(fo, )|,
it readily follows that I does not exceed I; 4 I + I3, where

n=( Ja( J |fi)1'|f(y)|dy)2dz)"’,

[0,00) {lzo-yI<t<|w-y|} 20 =
1 Iﬂ(w y)l 1/2
=( [ (| gEBineie) )",
[0,00) {lw-yl<t<|zo -y}

and I3 equals
(J 5( I Azo —9) _ 209\ y)1dy)’ at) "

— yln—-1 -1
[0,00) {lzo-y|<t,Jw-y|<t} I-’L’o yl Iw yl

Since the estimates for I; and I; follow along similar lines, we only consider
I, here. Since 2 is bounded and since |zg — y| ~ |z — y|, by Minkowski’s
inequality, I; does not exceed

(3) c f Izlf?(y)l ( f i]?dt)llz

— y|n-1
o=l (Izo=yl,lw—yl]
|.£(»)I 1 1 \1/2

<ec - dy

,,.\~£. |20 — y|n1 (l-'vo -y2 |w- ylz)

1
< chl/? |f(¥)l dy
,.({,. |zo — y|™~1 |20 — y[3/2

<entt? [ _ @l

— y|n+1/2
nl\Q- Iz yln
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It is well known (cf. Torchinsky [6, p. 83]) that the above expression does
not exceed cM f(z) < eM, f(z),1 < p < oo. Thus

(4) L,I, < cM,f(z).

In order to estimate I3 recall that z¢,w € @, y € Q*, and note that

Azo—y) Aw-y) 1 1

- < |2(z0 - . -
e e e R T
1
+ Wm(zo - y)— 2w - y)|
=A+ B,

say. By the mean value theorem, and since |z — y| ~ |zo — y| ~ |w — ], it
readily follows that
|20 — w] |20 — y|* 2 |zo — v

A<e < <e .
T zo—y*Hw—y|mt T Tze—ylm T |z -y|m

Similarly, since

1920 - 9) - 2w —y)| = |2(2=L) - o(=2))

|zo — Iw -y
< Izo— w—y I.‘to—wl"‘
lzo -yl |zo — ylo
we also have
ha
B<c|z_ ypira

Thus, again by Minkowski’s inequality, it follows that I3 does not exceed (a
multiple of )
| f2(y)I 1 \1/2
’ le—yl"( J tsdt) W
{lzo-yl<t,|lw-y[<t}

' | f2(y)] 1 \1/2
(o 4
+h f |z — y|n-1+a ( f ) dt) dy.
R" {lzo-vI<t, |Jw-y|<t}

Since |zg — y| ~ |z — y| ~ |w — y|, the innermost integrals involving ¢ above
are of order |z — y|~!. Consequently,

(5) I3 < ch f If(y)l dy+cha f If(y)l dy.

x — ylntl — y|nta
RD\Q‘I yl RI\Q‘ Iz yl

Again by an argument similar to the one used in bounding I; above, the
right-hand side of (5) does not exceed cM f(z) < ¢cM, f(z). Hence, combin-
ing the above estimates, it follows that

ln(f2)(z0) — u(fo)(w)| £ cMpf(z), forallweQ,
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and consequently,

(6) Q17! [1u(f2)(w) = p(f2)(x0)] dw < M, f(z).
Q

Finally, since

lu(f1 + f2)(w) = u(f2)(0)]
< u(fr)(w) + |u( fo)(w) — p(f2)(z0)l, forallw e Q,
by (2) and (6) above it follows that

Q17" [1u(f)(w) = p(f2)(zo)| dw < M, f(z),
Q

-and the proof is complete. =

Proof of Theorem 2. The proof follows along the lines of that
of Theorem 1. Given a point'z € R", suppose Q@ = Q(zo,h) is a cube
containing it, and put Q* = Q(z¢,4/nh). If bg denotes the average of b
over the cube @, note that

Ny)Fi(f,y) — Fi(bf,y)
= (b(y) — bQ)Fi(f,y) + b Fi(f,y) — Fi(bf,y)
= (b(y) = bQ)Fi(f.y) - Fi((b—bg)f,y) = A+ B,
say. First we estimate the average of ||A|| < |b(y) — bol || Fi(f)|| over @. By

Hoélder’s inequality with indices 1 < 7, 7' < 00, and the John-Nirenberg
inequality, it does not exceed

M (1 [l - el )" (1017 [ IR d)
Q Q

< c|jbll« inf Mr(u())(y)-
veQ
To bound the average of || B|| over Q note that

1Bl < 1F2((b = bQ)xQ- £ 9)Il + [IF2((b = bo)xmm\@- £, ¥)l = | Brl| + || B2 ]|,

say. Let 1 < g, u < oo be such that qu = s. Then by Hélder’s inequality
and the boundedness of the Marcinkiewicz.integral in LI(R™) it follows that

® 1 [iBildy< (1ot [IBilrdy) "
Q Q.

1/r

<e(tQI [ 1vw)- 'bQIj.“-If-(y)l"’dy)” ’
:

<e(1Q1 [ 1btw) - bl @) (1@ [ Iswimeay)™
Q" Q*
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< c"b”* ;25 Maf(y) .

Finally, to bound ||B;||, as in the proof of Theorem 1, it suffices to
estimate

| F2((b — bg)xmr~\@= f>¥) — Fi((b — bg)xRr=\q@- f>%o)]| -
By the argument in the proof of the theorem, with f;(y) assuming the value
(5(y) — b@)xr~\q@-(¥) f(y) now, we estimate the above expression by a sum
of three terms, corresponding to I, I, and I3, respectively. By estimate (3),
then, the terms corresponding to I; and I; are dominated by

p1/2 lb(y) — bal I/ (W)
ch J [z — y|n+172 dy,
RP\QT

which, by Hélder’s inequality with indices 1 < s, 8’ < 00, is in turn bounded
by

c(ha'/z f |b(y) — bQP' dy)l/a (ha/2 f | f()I° dy)ll".

— |’ (n+172) T — y|s(n+1/2)
wige 12— 07T wig 18— U

The second term above does not exceed cM, f(z). -Similarly, by a result of

Fefferman and Stein [3], the first term does not exceed cM¥*b(z) < c||b]|..
In order to estimate the term corresponding to I3, we make use of the
estimate (5). Thus, this term does not exceed

b [ BO=bellfON L e b= bl

T — n+1 I - nt+a
rrvg- Y I Ll |

Hence, as above, this term is also bounded by ¢||b||.M,f(z). It is now a
simple matter, left to the reader, to complete the proof. »

To close this paper, and show how these results extend to the more
general Marcinkiewicz integrals introduced above, we prove Theorem 5.

Proof of Theorem 5 (cf. Chanillo-Wheeden [2]). Clearly
[ BN u(z) do
n-

- 1 ) Bt
= ..;!1 |F,(y)|2(t” R! w(z)(tHz I) da:)_t3 :
If Ax denotes the set
(i emet ot & fuo(rpimy) ).

k=0,%1,...,
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the above expression is bounded by

Y2t [ R t) "y‘“.
k

atl
R'0'

Now, note that if (y,t) € Ak, then also
1 t n :
— < AI .
) w(@) () 4 S M)

Now, if [y—2| < t, then t+|z—y| ~ t+|z—z|, and consequently, if |[y—z| < t
and (y,t) € Ay, then

1 t ni
k=l <e— S a— < :
287 < c R_[ w(z)(t Y P Zl) dz < cMw(2)
In particular, if (y,t) € Ax and |y — 2| < ¢t, then z € Ex = {z € R" :
Mw(z) > c2¥}. Thus, for (y,t) € Ax and z € R™ such that |y — z| < t, we

have £(2) = f(2)xk, (), and consequently, Fy(f,y) = Fi(fxz,y). Hence
it follows that

d dt dydt
[ RO @)= = [ IF(fxe, v)Pxa v, =5
al+1 n.-}l
+ e
[ p(fxe.,9)* dy < cllfxe. 3,
a-

for all k. Thus,
J B(N@Vw(z)dz < ey 25| fxe, I}
R" k

=c [If()?Y 2*xE,(z)dz.
R" k

By the definition of the sets Ej, the above sum does not exceed cMw(z).
Thus, the right-hand side above is bounded by ¢ [q. | f(z)]?Mw(z) dz, and
the proof is complete. =

Since ps(f)(z) < cu}(f)(z), the same result holds for the Marcinkiewicz
integral related to the Lusin function.
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