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0. In this paper the word space means a Tichonoff space. If X is a space,
Y< X, then IntY is the interior of Y. Here Y~ @ or Y, ~ Y, means that
Int Y=0Q or Int(Y;\Y;) = @, respectively. The space I = [0, 1] is the line
segment with its natural topology, and I* denotes the Tichonoff cube of
weight 1. By T, we denote the discrete space of cardinality t, T.* is its one-
point bicompactification, and finally E* is the Kowalsky space of weight 1.

The letters U, V, W, O with or without indices denote only open subsets
of X, the letters F, &, P stand only for closed ones. Let y = {Y,: ac A} be a
system of subsets of X. For Z < X let

ynZ=1{Y:0acA, ¥, =Y,nZ)}.

The union of all elements of y is denoted by {Jy, and their intersection by
(7. The equality |4] = T means that the cardinality of A equals t. The least
upper bound for the cardinalities of closed discrete subspaces of X is referred
to as ext(X), and
¥ (X) = supy (F, X).
FcX

0.1. DeFiNITION. Let F =< X and let y = {U,: ac A} be a family of

neighbourhoods of F. The family y is called admissible for F if [y ~ F.

0.2. DerFiNiTION. If X is a space and F < X, let A(F, X) < 7 if and only if
there exists a family y = {U,: ae A} such that F c U, for every ac A and

(a) y is admissible for F,

) 7l =14l <7

03. Remark. From now on the invariant A will be called a quasicharac-
ter of F in X. The quasicharacter of X (denoted further by A(X)) is the

smallest cardinal number 7 for which the inequality A(F, X) <t holds for
every F c X. It is clear that A(X) < ¥ (X).
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1. Formulating Definitions 0.1 and 0.2 in terms of complements we
obtain the following

1.1. LemMa. For an arbitrary space X we have A(X) < t if and only if for
every U < X there exists a family y = {F,: a€ A} such that

(@) Fy < U for every ac A,

(b) [Ur] 20,

© h<r

A family y satisfying (a) and (b) will be called admissible for U. If,
moreover. (c) holds we write A(U, X) <.

It follows immediately from the lemma that A(U) < A(X) if U = X, ie,
the quasicharacter is hereditary with respect to open subsets.

1.2. ProrosITION. Let f: X =Y be a closed continuous mapping of X
onto Y. Then A(Y) < A(X).

Proof. If V < Y, then for U = f~! V there exists an admissible system y
= {F,: ae A} of cardinality not greater than A(X). The family f(y)
= {fF,: ae A} is evidently admissible for V. Clearly, |f(y) < A(X), and
thereby A(Y) < A(X).

1.3. TueoreM. If X is a space, then A(X) < c(X).

Proof. Take any U < X. Let y, = {V,: ae A} be a maximal disjoint
family of F,-sets, contained in U. It is readily seen that )y, is dense in U.
Let

o= U Fu.
neNt

where N* is the set of all positive integers. It is clear that y =
\F2: a€A, N* an] is admissible for U and

17l < [A]- No < ¢(X).

The quasicharacter of X does not necessarily coincide with the Souslin
number or with ¥ (X). It is evident that A(T)) < N, for every 7, while ¢(T)
= 1. The same holds for the space E*. We are going to give an example of a
space X whose quasicharacter is strictly smaller than the Souslin number
and the pseudocharacter at the same time. It can also be mapped openly
onto a space Y such that A(Y) > A(X).

1.4. ExampLE. Let X =(T;* xI)\(p* x(0, 1]), where p* is a single uniso-
lated point of T*. It is clear that

X =(T,xI)u {x*!, where x* = (p*, 0).
4 | L

It follows from the definition of X that c(X) =t and ¥(x*, X) =1. Let us
verify that A(X) = R,. If we are given U < X, let

V,=(T* x[0, 1/n)) n X for all neN* and W, =V,\[V,.,].
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It is readily seen that () W, is dense in X, so |J (W,nU) is dense in U.

. neN*t . neN*t +
It is enough. therefore. to prove that W, n U is an F,-set for every ne N*. In

fact, W,nU is an F,-set in T, xI and [W,nU]#x*. As a closed subset of
T, x1I is closed in X if and only if its closure in X does not contain x*, it
is proved that W,nU is an F,-set in X. If

W,nU= | Fi,
neNt

then y = {Fi: i, ne N*} is an admissible countable family for U. Now let Y
= T* and let n: X — Y be the natural projection. It is not difficult to prove
that n is open and, as all points of T, = T.* = Y are open subsets of Y, its
quasicharacter coincides with its pseudocharacter equal to .

1.5. THEOREM. For any space X, c(X) < Z(X)ext(X).

Proof. Write A(X) = 4, ext(X) = 1. Assume that c(X) > Ar. It is poss-
ible therefore to choose a disjoint family ¢ = |U,: a €4} of cardinality 7,
greater than At. Let y be an admissible family for F = X'\J ¢ such that
Iyl < 4. As (\y ~ F, there exists an x, eU,\(\7 for every a € A. The immediate
consequence of disjointness of o is that x, # x; if a # B, and thereby the
family o, = {{x,}: ae A} is of cardinality 7,. Let ¥, =(Jg, and Y= [Y,].
Evidently, Y, is an open discrete subset of Y, which in turn is closed in X.
We shall show that Y\Y, is a G;-set in Y. In fact, Y\Yy, = F,s0y; =ynYis
a family of neighbourhoods of Y\Y, in Y. Remembering the way we have
chosen the points x, we obtain (\yn Y, = @. But

NnnY=NynYnY,=0.

Hence Ny, = Y\Y, and our assertion is proved. To complete the proof of
the theorem, observe that Y, is an F;-set in Y and. consequently, in X. But
Y, is then a union of at most /. subspaces, closed in X and discrete by the
discreteness of Y,. The power of every element of this union does not exceed
ext(X) =1, and as there are at most A elements, we have 74 =|Y| < 41,
contradicting the fact that 7, > At by our assumption.

1.6. CoroLLARY. If ext(X) = X,, then A(X) = c(X).

From the last equality it follows easily that for compact, Lindelof and
countably compact spaces A(X) = c(X), and also c(X) < ?(X).

1.7. ExaMpLE. Let X = I'. From Corollary 1.6 it follows easily that 1(X)
= c¢(X) = N,. As for the space T*, again c(T*) = A(T;*) = t. Observing that
w(T*) =t we see that there exists.an embedding of T* into I*. This proves
that the quasicharacter is not hereditary with respect to closed sets even in
compact spaces.

1.8. ProrosiTiION. For a normal space X and its dense subspace Y,
A(Y) < A(X).
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Proof. We shall show that if A(X) =1, then for every U = X there
exists an admissible set system y such that |y] <7 and {Jy is open in X. In
fact, for any Fey,, an arbitrary admissible family for U of cardinality not
greater than t, in view of the normality of X it is possible to choose an F,-
neighbourhood V 2 F and V = U. As

V= U &,
ieN*
let y(F)= {®}: ieN*}. Finally, the family y = {y(F): Fey,} is evidently
admissible for U and |y < |yl N < 7. '

Now, if U, is open in Y, let us find a U< X, UnY=U, and an
admissible family y for U such that (Jy is open and |y| < 7. Consider the
family y, = y n Y. Clearly, |y,| < t. Let us verify that y, is admissible for U,.
In fact,

[Urnd=[UrnT].
As (Jy is open,
[UynY]=[Uy]2U2U;.

The results below are concerned with some multiplicative properties of
the quasicharacter. As there exists a large class of spaces X (with ext(X)
= Np) for which 1(X) = c(X), the finite multiplicativity of the quasicharacter
is independent of the set theory axioms. For the Souslin number this was
proved in [1] and [2]. Juhdsz in [2] proved that the Souslin property holds
for an arbitrary product of spaces if and only if every finite product of these
spaces has the Souslin property. Kurepa proved in [3] that if c(X,) <7,
ac A, then "

c([T X)) < 2.
acA
The author does not know whether the same results are true for the
quasicharacter.

2. Now we shall prove several theorems, analogous to the above ones in
some respect and among them an analogue of Marczewski’s theorem [4].

2.1. THEOREM. For any spaces X and Y,
A(Yx X) < min {A(X)d(Y), A(Y)d(X)}.

Proof. Let us prove, eg., that A(Y x X) < A(X)d(Y). There exists a
subset D of Y, dense in itself and of cardinality d(Y). For a given set U
c Y xX and for every yeD let

yU) =(y} xX)nU.

As {y} x X is homeomorphic to X, the set y(U) is homeomorphic to an open
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subset of X. Therefore there exists an admissible family y, for y(U) in
¥} x X. The elements of y, are, evidently, closed in Y x X and |y,| < A(X).
Now, let

y=U -
yeD

It is clear that y is admissible for U and |y| < A(X)d(Y).
2.2. CoroLLARY. If X and Y are compact spaces, then

c(Y x X) < min {c(Y)d(X), c(X)d(Y)}.

It is easy to verify that for any spaces X and Y the inequality c(X x Y)
= ¢(X) holds. It is not known yet whether A(X x Y) > A(X) for every space
Y, but under some restrictions on Y this can be proved.

23. ProrosiTiON. If Y has a point of local compactness, then A(X xY)
= A(X).

Proof. Take a point y,e Y and its neighbourhood O, such that [0, ]
is compact. For any F < X consider the product F x[0, ]. Let y, be its
admissible family in X x Y. Using

Y2 =71 "X x[0,,])

we shall construct an admissible family for F in X. As [0, ] is compact, it is
true for every Uey, that from F x[0, ] < U it follows that there exists a
V = X such that

Fx[0,,] =V x[0,,]<U.

Let us denote such a ¥, depending on U, by y(U). We assert finally that the
family y = {y(U): Uey,} is admissible for F. In fact, if W < (}y\F, then by
the choice of y we have

W, =Wx[0,,]<U for every Uey,.

Observing that X x0,, is dense in X x[0,,] we see that W), N(X xO0,,) is

not empty and open in X x Y. It is also a subset of () y, \F, contradicting the
fact that y, is admissible.

24. THEOREM. For an arbitrary space X and for a metric space M we
have A(X x M) < A(X).

Proof. Taking a point from every element of a o-discrete base of M we
will obtain a sequence {®,: ne N*} of closed discrete subspaces of M whose

union is dense in M.
Lt UcXxMand U,=(Xx{y}))nUforallye () ®P,.Let 4 be a set

neNt
of indices, |4| =t = A(X). As U, is open in X x {y}, tl:ere exists an admiss-
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ible family ¥’ = |F: a€A} for U, in X x |y]. We shall show that the set
P1= U F

yed,
is closed for every ac 4 and ne N*. Let ze X xM\P?. Then z =(x, m),
where xe X and me M. If m¢ ®,, then

ze X x(M\®,) < X x M\P"

because P; < X x®,. If me ®,, then x¢ F; and, consequently, there exists a
V < X such that

(x, meV x{m} = X x{m}\FT.

It follows from the discreteness of &, that we can choose a W = M such that
Wne,=m). It is clear that

(x,meVxWc<c X xM\P;
and it is proved that P is closed in X x M. The family
y={P}: ae A, ne N*}

is, evidently, of power not greater than |A4|- Ny =t and is admissible for U.
" We are going to point out some classes of spaces for which the
quasicharacter countability is multiplicative.

We will often use the following evident lemma:

25. LemMma. If y is a o-discrete family of open F,-sets, then )7 is an
F,-set.

In fact, a countable sum of F,-sets is an F,-set and a union of a discrete
family of F,-sets is an F,-set.

Let us introduce some auxiliary notation. The word network will mean a
network of closed elements. Let M, be a space for every ae A. Suppose that
for all ae A the space M, has a base (a network, a =m-base) which is o-
discrete. Denote this base (network, n-base) by B,. A set U < [| M, is called

acA
standard if

U=]]=U,

aeA

where n, is the natural projection of M = [| M, onto M, and, besides, n, U
aecA

= M, for all ae A except for a finite number of them, and if n, U # M,, then
n, U e B,. It is easy to prove that standard sets form a base (a network, a n-
base) in M. If U is standard, then

y(U) = laed: n,U # M,]}.
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If U and V are standard, U NV = @, then there exists an aey(U) ny(V)
such that

n,UnnV=0.

2.6. LEMMA. The union of a disjoint family of standard elements is an
F ,-set.

Proof. Take a family y satisfying the hypothesis. As all elements of y
are standard,

Ur= U (U

neNt
where y, = Uey: [y(U)| = n} for every ne N*. It follows from Lemma 2.5
that it is enough to prove that (v, is an F,-set for all ne N*. We shall do
this by induction. If n = 1, then for every Uey, we have y(U) = {a}, where
ae A is the same fixed index for all Uey,. Consequently, the set
Un=n"'(U nU)
Uery

is an F,-set as an inverse image of an F,-set. Assume that it is proved for all
n<k that (Jy, is an F,-set. Verify that (J)y,,, is of type F,. Take an
arbitrary U*€y,,, and let

Y(U*) = {al’ ceey ak+l}'
For every Uey,,, we know that y(U) ny(U*) # Q; therefore

k+1

U¥k+1 = _91 (U)’in), where %41 = {Uep+y: xey(U)}.

Applying again Lemma 2.5 observe that it is enough to show that (Jyi,, is
an F,-set for all ie{l,..., k+1}. But

Utk+r = UL‘)’ (U%+10), where Y+ 1.0 = {WeETi+1: n, W= Uj.

Remembering that B,, is a o-discrete base (network, n-base) and using for the
last time Lemma 2.5, we see that it is enough to prove that, for all U €B,,

U7Yi+1v is an F,-set in M. But if We¥, 4y, then in the space [ M, xU,
acA\f;}
clearly, |y(W)| = k. We may thus deduce from the induction assumption that

U¥i+1v is an F,-set in [| M, xU, and thereby an F,-set in M, because
acA\@;)
the subspace [] M, xU is itself an F,-set in M.
aeA\fa;}
2.7. THEOREM. If for every ac A, M, has a base (a m-base, a network)
which is o-discrete, then
A(l_[ Ma) = No.

acA
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Proof. Let
UcM-= n M,.

aeAd.
Observe that standard sets form a base (a n-base, a network) in M.
Therefore, if y = {Us: BeB, Uy < U} is a maximal disjoint family of stan-
dard elements, then )y is dense in U. By virtue of Lemma 2.6 we have
Ur= U F.,
neNt

so the family y, = {F,: ne N*! is countable and admissible for U.

2.8. CoROLLARY. Let X be a @-space, i.e., a space which is a closed image
of a product of metric spaces. Then A(X)=N,.

This follows from Proposition 1.2 and Theorem 2.7.

The following problem was posed by Arhangel’skii.

29. ProBLEM. Let, for every ae A, M, belong to exactly one of the
following classes:

(a) closed images of metric spaces,

(b) stratifiable spaces,

(c) spaces having a o-conservative network,

(d) o-spaces.
Is it true that

A‘(n M a) = NOO

acA

Let X, be a space for every ae A and let
A=supA(X,), t=supext(X,), p=supc(X,)

acA acA acA

2.10. Prorosition. A([] X,) < 2*

aecA
In fact,

AT X) <ce([TX)s2#<2*

acA acA

by Theorem 1.5 and Kurepa’s result [3].

I am glad to have an opportunity to express my deep gratitude to my
scientific advisor — Professor Arhangel'skii — for his valuable comments
and encouraging my work at this paper.
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