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1. Introduction and preliminaries. Let {X,,» > 1} be a sequence of
independent, identically distributed random variables with the common
continuous distribution function F. X is said to be a record value of the
sequence {X,, n > 1} if

X, > max{X,, X, ..., X,_,}.

By convention, X, is & record value. The random variables L,, n > 1,
defined by

L, =1, L,=min{j:j>L, ,,X;>X; },n>1,
give the indices at which record values occur.
The function Ry defined by
Rp(z) = —log(1—F(2)), —oo<a< oo,

is called the hazard function corresponding to the distribution funection F.
The function

Hy(s) =1—exp{—VRp(®)}, —oc0o<o< oo,
is called the associated distribution function corresponding to F. The point
zg =sup{z: F(z) <1}, @< oo,

is said to be the right end of the distribution function F.

In what follows we shall write R, H, and z, instead of R, H, and
zf, respeoctively. '

The limit laws for record values are very closely related to the limit
laws for M, = max{X,, X,,..., X,} of independent, identically distrib-
uted random variables X,, X,,..., X, with the distribution function F,
i.e. to the non-degenerate limit distributions G such that
(1) imP[M, < a,+b,] = G(x),

n—-00
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where a, > 0 and b,, n > 1, are normalizing constants. The limit distri-
butions satisfying (1), called the extreme value distributions, were fully
characterized by Gnedenko [1]. The extreme value distributions belong
to the type of one of the following three distributions:

(2) Ax) =exp{—€ "}, —oo<r< o,
0 fx<o0,

(3) D, (%) = e .
exp{—a~° i x>0,

exp{—(—2)} i#fz<0,

(4) Yo(@) = i 5>0,

where a i8 a positive constant.

If (1) holds, we write F € DM (G) (F belongs to the domain of attrac-
tion of the extreme value distribution @).

Similarly, the sequence {X; ,n > 1} is said to have a limit distribu-
tion U if U is non-degenerate and there exist normalizing constants a, > 0
and b,,n > 1, such that

(5) LmP[X, <a,2+b,] = U(x).

n—00

We call the distribution function U the record value distribution
and we indicate (5) by writing F € DR(U) or, equivalently, R € DR(U),
where R is the hazard function corresponding to F. Resnick [3] has proved
that the record value distributions are of the form &(—2log(—1log@)),
where @ denotes the standard normal distribution, and G is an extreme
value distribution. Therefore, if # € DR(U), then U must be of the type
of one of the following three distributions:

(6) ?(2),

0 if <0,

(7) Pra(@) = {ds(loga;ﬂ) if >0,

(@ (log(—x)"%) ifz<0,

(8) D, ,(v) = 'll itz>0

where a i8 a positive constant.

In what follows we often need the theorems proved by Resnick
in [2] and [3].

THEOREM 1 (Duality Theorem). We have

FeDR(U) iff HeDM(G),
where U = ®(—2log(—log@)).
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THEOREM 2. Let F and @ be distribution functions with af = x) = x,,
Zy < 00, and

9) lim 1=F@ _

" —a, 0<a< oo.
zvzg- 1—G () ’

If there exist normalizing constants a, > 0 and b,,n > 1, such that

lim ™ (a,z+b,) = V(z),

Nn—>
where V is non-degenerate, then

lim G"(a,z +b,) = V'%x).
The distribution funetions F and @ with the same right end satisfy-
ing (9) are called a-tail equivalent.

THEOREM 3. Let F and G be distribution functions such that there exist
normalizing constants a, > 0 and b,, n > 1, for which

lim P*(a,z+0b,) = U(x), lim@"(a,xz+b,) = V(2),
n—-00 n—>00
where U and V are extreme value distributions.

Then there exists ,0 < B < oo, such that F' and G are B-tail equivalent
and there exist A > 0 and B such that V(z) = U(Ax+ B), where

(a) if U(x) = A(x), then x,< 00, A =1, and B = €&,

(b) if U(x) = D,(x), then xy = o0, B =0, and f = A°%;

(¢) of U(x) = P, (), then zy< ooy, B =0, and f = A™°.

If there exist constants 4 > 0 and B such that V(zr) = U(4x+ B),
then we say that U and V belong to the same class.

Theorems 2 and 3 determine the domains of attraction of extreme
value distributions by means of a-tail equivalence.

The aim of this note is to characterize the domains of attraction of
record value distributions.

2. Hazard equivalence and its applications. In our considerations
we often need the following obvious lemma.

LemMA 1. If
U(x) = &(—2log(—logG (x)))

18 a record value distribution, then for any given B, —oo < B < oo,
V(@) = ®(8—2log(—logG(a)))

18 a record value distribution belonging to the same class as U (x).
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In particular,

(a1) if U(x) = D(x), then V() = U(z+p);

(b)) if U(w) = D, .(x), then V(z) = U(Az), where A = &I°,

(e,) if U(®) = P, q(2), then V(x) = U(Ax), where A = e °,

The following theorem elucidates the role of a-tail equivalence in the
limit behaviour of record values.

THEOREM 4. If continuous distribution functions F' and G are such that
their associated distribution functions are a-tail equivalent, 0 < a < oo, then

FeDR(U) iff @eDR(U),

where U is a record value distribution.
Proof. Let us assume that ¥ € DR(U). Then, by Theorem 1,

FeDR(U) iff HyeDM(V),

where U = & —2log(—log V)). Hence, on the basis of a-tail equivalence
of the associated distribution functions H, and Hg, and Theorem 2, we
obtain H, € DM (V'?). Hence, using Theorem 1 again, we have

G € DR(U,), where U,(2) = <15(2loga—2log(—log V(m))).
Therefore, by Lemma 1, there exist A > 0 and B such that
G(r) € DR(U(Az+ B)).

. Now it is easy to see that if G(2) € DR(U(Az+ B)) with normalizing
constants a, > 0 and b,,n > 1, then
B

’
L) bn = bn__

1
G € DR(U) with a, = — n

Y|
Similarly, one can prove that G € DR(U) implies F € DR(U).

For evaluation purposes it is convenient to express the conditions
of Theorem 4 in terms of hazard functions corresponding to F and G instead
of their associated distribution functions.

Definition. The distribution functions F' and G are f-hazard equiv-
alent if xf = 2@ = x,, v, < o, and

anl

(10) Hm (VRy(s) —VRg(®)) =8, —oo<f< oo.

It is easy to see that F and G being a-tail equivalent are 0-hazard
equivalent.

LEMMA 2. The distribution functions F and G are f-hazard equivalent,
—00 < < oo, if and only if their associated distributions are e~ "-tail
equivalent.
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Proof. The statement follows from the equalities
H
& =af, &°=af,
and
1—Hp(z)
1—Hg()

= exp | — (VRy(x) — VB4 (2))}.

By Lemma 2 and Theorem 4 we have the following result.
THEOREM 4'. If continuous distribution functions F and G are f-hazard
equivalent, — oo < f < oo, then
FeDR(U) 1iff @GeDR(U),

where U 18 a record value distribution.
We observe that p-hazard equivalence, —oo < < oo, does not
imply, in general, tail equivalence with ratio a, 0 < a < oo.
Indeed, for instance, the distribution functions
F(z) = 1—exp{—(tanz+sinz)’}, 0<2z < =/2,
and
G(r) = 1—exp{—(tanz)’}, 0<z <=2,

are 1-hazard equivalent but not tail equivalent, as

. 1—F(x)
lim ——— = 0.

On the basis of the remark before Lemma 2 and Theorem 4’ we get
the following obvious assertion:

THEOREM 5. If F and G are continuous and a-tail equivalent distribu-
tion functions, 0 < a < oo, then

FeDR(U) iff @eDR(U),

where U is a record value distribution.
THEOREM 6. Let F' and G be continuous distribution functions such that

(11) F e DR(U) with normalizing constanis a,> 0 and b,, n>1,
(12) G € DR(V) with the same consiants,

where U and V are record value distributions.

Then the distribution functions F and G are p-hazard equivalent,
—o00o < < oo, and there exist constants A > 0 and B such that V (x)=
U(Az+ B), where

(8:) if U(@) = B(a), thon 3,< o, 4 =1, and B = —2§;

(by) if U(2) = Dy,4(2), then 2, = oo, A = exp{—2f/a}, and B = 0;

(¢s) of U(®) = Py o(®), then y < o0, A = exp{2f/a}, and B = 0.
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Proof. We know that
U = &(—2log(—loglU,)) and V = &(—2log(—logVy)),

where U, and V, are extreme value distributions, respectively. The normaliz-
ing constants a, and b, can be replaced by functions a(s) > 0 and b(s),
8 €(0, o) (see [2]). Since (11) and (12) imply

(13) limH%(a,z+b,) = U,(x),
n—00

(14) lim H(a,z+b.) = V,(z),

where

a, = a((logn)’) and b, = b((logn)’)

(see [2]), we can use Theorem 3. Therefore, H, and H, are y-tail equiv-
alent, 0 < y < oo, and, by Lemma 2, F' and G are f-hazard equivalent,
B = —logy, which proves the first statement of Theorem 6.

Now we prove (b,). If U(x) = @, ,(), then U,(z) = D,,(x), whence,
by (b), £y = o0, B = 0, and V,(z) = B,,(y**x). Therefore,

V(z) = &(—2log(—logexp{—(y**z)~"*})) = &, ,(4a),

where A = y** = exp{—28/a}, which proves (b,).

The proof of (a,) and (c,) is analogous.

We shall characterize closer the statement of Theorem 4’ (or, equiv-
alently, Theorem 4). Theorem 4’ does not give precisely the normalizing
constants for which the equivalence

FeDR(U) itf @eDR(U)

holds.
We observe that, under the assumptions of Theorem 4’, there exist
A > 0 and B such that .

F(r)e DR(U(x)) and G(z) e DR(U(Az+B))

with the same normalizing constants. The constants A and B depend
on S and on the type of the record value distribution U.

THEOREM 7. Let F and G be continuous f-hazard equivalent distribu-
tion functions, —oo < f < oo. If

(16)  F(x) € DR(U (%)) with normalizing constanis a, > 0 and b,,n > 1,
then constants A > 0 and B given by (a,), (b,) or (¢,) are such that

(16) G(x)e DR(U(AaJ+B)) with mormalizing consianis a, and b, .
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Proof. It is known (see [3]) that (15) holds iff
— 1
(17) lim exp{/n}(1—Hy(s,0+b)) = exp| - 7000},

where g(z) = ®~'(U(»)). From p-hazard equivalence, by Lemma 2,
we infer that

. 1—Hp(x)
18 lim ————= —¢#
( ) Tz — 1—Ha(w)

It is easy to see that for all # such that |g(z)] < oo equality (17)
implies
a,r+b,—>xy— a8 n—>o0.

Hence, for |g(z)] < oo (17) and (18) give

(19)  lim exp{V/n} (1 — Hy(a,z+b,))

. exp{Vn} (1—Hg(a,2+b,))
= lim —
n-0 @Xp {V'n} (L—Hg(a,2+b,))

exp {l/o_z} (1—Hg(a,2+D,))

= exp{ﬂ}exp{-%y(w)} = e@{—%(y(w) —213)}.

Since g and Hy are continuous non-decreasing functions, we see that
(19) holds for every . But (19) holds iff G € DR(V) with normalizing
constants a, and b, , where

V() = ®(g(x)—28) and g(») = O~ U()).

Thus, by Lemma 1, V and U belong to the same class. Therefore, there
exist A > 0 and B depending on § and g(x) such that V(x) = U(4Ax+ B)
Putting instead of g(x) the functions x, logz®, and log(—x)"° we see
that A and B are given by (a,), (b;) and (e¢,), respectively.

Resnick stated (see [3]) that it is difficult to find functions, except
R(x) = (3alogz)?, z > 1, which are attracted to D, .(x). Theorem 4’ allows
us to construct other distribution functions belonging to the domain of
attraction of &, ,.

THEOREM 8. Let F' be a continuous distribution function with the right

end x4, o < 0. Suppose that f: R—~R and g: R—~R are continuous mon-
decreasing functions such that

lim f(@) =0, lim f(z) =8,0<B< oo,

T—+>—00 2>x)—

liminfg(x) > —oo, lim (1—g(z))VRp(x) = a,0< a < co.

T—+—Q T>To—



136 W. FREUDENBERG AND D. SZYNAL

If Ry € DR(U), where U is a record value distribution, then the function

(20) R,(@) = (9(2) VRp(2) +f(2))*

18 such that R, € DR(U).
Proof. It is easy to verify that

F,(x) = 1—exp{—R,(x)}

is a continuous distribution function with the right end x,. The distribu-
tion functions ¥ and F, are (a — B)-hazard equivalent. Indeed,

lim (VRz(2)— V Bg(z) = lim ((1—g() VRp(@)—f(@)) = a—8.
T—To— T—>Ty—

Therefore, by Theorem 4’, R, € DR(U), which completes the proof.
Example. Let

g(x) =1 and f(x) = (/2 +arctanz)°,

where ¢ is a positive constant. Then

(w/2 + arctanz)* if <1,
(3alogz + (/2 +arctanw)’)® * if >1
fulfils the assumptions of Theorem 8. Since

R, (») =

R(z) = (% aloga:)2 € DR(D, .(v))

(see [2]), we have
R,(2) € DR(®, ().

Remark. It is easy to see that the assumptions of Theorem 8 can
be weakened. It is enough to take f and g such that R, defined by (20) is
the hazard function corresponding to a continuous distribution function
and

lim ((1—-g(@))VRp(@)—f(@)) =B, —oco<p< oo,

T—+To—

holds.

3. Concluding observations. Theorem 6 states that if F e DR(U)
and G € DR(U) with the same normalizing constants, then F and G are
hazard equivalent. The assumption that the above-mentioned convergence
holds with the same normalizing constants is necessary. This is a conse-
quence of the following theorem:

THEOREM 9. Let F be a continuous distribution function and let G ()
= 1— (1—F(x))°, where ¢ is a positive constant. Then

(21) F e DR(U)
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iff ,
(22) G € DR(V), where V(z) = ®(Ved™(U(a))).

Proof. It was proved in [2] (Theorem 3.1) that F € DR(U) with nor-
malizing constants «, > 0 and b,,n > 1, iff

(23) lim 27 %8+ by) =
n—>00 l/’n

=g(x),

where g(2) = ®'(U(x)). By switching from normalizing constants
a, and b,,n>1, to functions a(s) > 0 and b(s) (see [3]), equality (23)
can be replaced by

Ry(a(8)z+b(s))—s

(24) lmolo 7 = g(x).
Let us set ¥y = cs. Then, by (24),
lim cRp(a(y/o)a+b(y/o) —y _ Veg(a).

Yoo l/g
Putting a, = a(n/c) and b, = b(n/c), we obtain
- cRgp(a,2+b,)—n

2b li —
( ) 7n—00 ]/'n

= I/Eg(m).

Let us observe that Rg(x) = cRp(x). Therefore, by Theorem 3.1
from [3], we see that condition (25) is equivalent to (22). This completes

the proof.
Let now F(x) € DR(®()). Then, by Theorem 9,

G(@) = 1—(1—=F(2))° € DR(®(Veu)).

It is obvious that also G(z) € DR(®(x)). For ¢ +# 1, F and G are not.
B-hazard equivalent since
lim (VR (@) — VEg(@) =lim (1—Vo)VRy(a) = +oo.
T-*To— ->To—
Thus we have shown that the hazard equivalence of two continuous
distribution functions F' and @ is not a necessary conditions for the equi-
valence

FeDR(U) iff GeDER(U).

From The6r9111 9 we obtain another interesting property of limit
behaviour of record values.
Let

Yn = min {X(n-l)k+l7 eeey Xnk}’ n > 17
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where k is a fixed positive integer. If {X,, » > 1} is a sequence of independ-
ent, identically distributed random variables with a common continuous
distribution function ¥, then, by Theorem 9,

FeDR(U) iff @&eDR(V),

where G(2) =P[¥,; <] and V(z) = ®(Vk &~ (U(x))).

Since Vk appears only as a location or scale parameter, U and V
belong to the same type of record value distributions (if F e DR(®),
then @ € DR(9®); if F e DR(9,,), then G € DE(9, ,3.); if F e DR(®,,),
then G € DR(®D, yx.))-

Finally, as an application of Theorem 4’ (and also Theorem 5), we
prove a result which is similar to that for the maximum of a random num-
ber of random variables [2].

THEOREM 10. Let {X,,n > 1} be a sequence of independent, identi-
cally distributed random variables with a common continuous distribution
function F, and the right end m,, v, << oo. Let {N,,n>1} be a sequence
of independent, identically distributed random variables with

P[N;=kl=p:, k=1, k;l’k =1, EN; =ké\;kpk< 0.
Suppose that {N,,n>1} and {X,,n > 1} are independent of each
other and

8, = )Ny Y, =max{Xg  ,,...,Xs)}.

=]
Then
FeDR(U) iff Fy eDE(U).
Proof. It is easy to see that the Y,’s are independent, identically

distributed random variables with a common continuous distribution
function

Fy (@) = D F*(@)p,.
k=1

In [3] it has been proved that

1—Fyp (x
lim r, %)

—————— = EN,.
T-+Tg— 1_F(m) !

But, 0 < EN, < oo, therefore, by Theorem 5, we get the required
statement.
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